SVAE-WGAN-Based Soft Sensor Data Supplement Method for Process Industry

Challenges of process industry, which is characterized as hugeness of process variables in complexity of industrial environment, can be tackled effectively by the use of soft sensor technology. However, how to supplement the dataset with effective data supplement method under harsh industrial enviro...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE sensors journal Ročník 22; číslo 1; s. 601 - 610
Hlavní autori: Gao, Shiwei, Qiu, Sulong, Ma, Zhongyu, Tian, Ran, Liu, Yanxing
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1530-437X, 1558-1748
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Challenges of process industry, which is characterized as hugeness of process variables in complexity of industrial environment, can be tackled effectively by the use of soft sensor technology. However, how to supplement the dataset with effective data supplement method under harsh industrial environment is a key issue for the enhancement of prediction accuracy in soft-sensing model. Aimed at this problem, a SVAE-WGAN based soft sensor data supplement method is proposed for process industry. Firstly, deep features are extracted with the stacking of the variational autoencoder (SVAE). Secondly, a generation model is constructed with the combination of stacked variational autoencoder (SVAE) and Wasserstein generative adversarial network (WGAN). Thirdly, the proposed model is optimized with training of dataset in industrial process. Finally, the proposed model is evaluated with abundant experimental tests in terms of MSE, RMSE and MAE. It is shown in the results that the proposed SVAE-WGAN generation network is significantly better than that of the traditional VAE, GAN and WGAN generation network in case of industrial steam volume dataset. Specially, the proposed method is more effective than the latest reference VA-WGAN generation network in terms of RMSE, which is enhanced about 9.08% at most. Moreover, the prediction precision of soft sensors could be improved via the supplement of the training samples.
AbstractList Challenges of process industry, which is characterized as hugeness of process variables in complexity of industrial environment, can be tackled effectively by the use of soft sensor technology. However, how to supplement the dataset with effective data supplement method under harsh industrial environment is a key issue for the enhancement of prediction accuracy in soft-sensing model. Aimed at this problem, a SVAE-WGAN based soft sensor data supplement method is proposed for process industry. Firstly, deep features are extracted with the stacking of the variational autoencoder (SVAE). Secondly, a generation model is constructed with the combination of stacked variational autoencoder (SVAE) and Wasserstein generative adversarial network (WGAN). Thirdly, the proposed model is optimized with training of dataset in industrial process. Finally, the proposed model is evaluated with abundant experimental tests in terms of MSE, RMSE and MAE. It is shown in the results that the proposed SVAE-WGAN generation network is significantly better than that of the traditional VAE, GAN and WGAN generation network in case of industrial steam volume dataset. Specially, the proposed method is more effective than the latest reference VA-WGAN generation network in terms of RMSE, which is enhanced about 9.08% at most. Moreover, the prediction precision of soft sensors could be improved via the supplement of the training samples.
Author Ma, Zhongyu
Tian, Ran
Qiu, Sulong
Gao, Shiwei
Liu, Yanxing
Author_xml – sequence: 1
  givenname: Shiwei
  orcidid: 0000-0001-9145-2309
  surname: Gao
  fullname: Gao, Shiwei
  email: gaoshiwei@nwnu.edu.cn
  organization: College of Computer Science and Engineering, Northwest Normal University, Lanzhou, China
– sequence: 2
  givenname: Sulong
  surname: Qiu
  fullname: Qiu, Sulong
  organization: College of Computer Science and Engineering, Northwest Normal University, Lanzhou, China
– sequence: 3
  givenname: Zhongyu
  surname: Ma
  fullname: Ma, Zhongyu
  organization: College of Computer Science and Engineering, Northwest Normal University, Lanzhou, China
– sequence: 4
  givenname: Ran
  surname: Tian
  fullname: Tian, Ran
  organization: College of Computer Science and Engineering, Northwest Normal University, Lanzhou, China
– sequence: 5
  givenname: Yanxing
  surname: Liu
  fullname: Liu, Yanxing
  organization: College of Computer Science and Engineering, Northwest Normal University, Lanzhou, China
BookMark eNp9kD1PwzAQhi1UJNrCD0AskZhT7Di2k7GUUopKQQpfm-U4F5GqjYPtDP33JGrFwMB0J9373J2eERrUpgaELgmeEILTm8dsvp5EOCITSqKE8egEDQljSUhEnAz6nuIwpuLzDI2c22BMUsHEEC2y9-k8_FhM1-GtclAEmSl9kEHtjA3ulFdB1jbNFnZQ--AJ_JcpgrIbvVijwblgWRet83Z_jk5LtXVwcaxj9HY_f509hKvnxXI2XYU6SqkPyziOaApAYo05YKAxzgVOeZJTkfNcxwCFKGPQnGkFac41w7TICS1BJUlR0DG6PuxtrPluwXm5Ma2tu5My4oQRzhIiupQ4pLQ1zlkopa688pWpvVXVVhIse2uytyZ7a_JorSPJH7Kx1U7Z_b_M1YGpAOA3n3bvdDH6A0iXeT4
CODEN ISJEAZ
CitedBy_id crossref_primary_10_1016_j_jtice_2023_105117
crossref_primary_10_1109_TNNLS_2023_3291371
crossref_primary_10_3390_act13010038
crossref_primary_10_1109_JSEN_2023_3279203
crossref_primary_10_1016_j_measurement_2023_113477
crossref_primary_10_1109_ACCESS_2022_3166917
crossref_primary_10_1016_j_physa_2024_129914
crossref_primary_10_3390_s24206738
crossref_primary_10_1007_s11356_024_33752_6
crossref_primary_10_1109_TIM_2022_3170967
crossref_primary_10_1109_JSEN_2023_3261330
crossref_primary_10_1016_j_ces_2023_118958
crossref_primary_10_1016_j_engappai_2025_110306
crossref_primary_10_3390_s23031061
crossref_primary_10_1109_TIM_2024_3427786
crossref_primary_10_1109_JSEN_2023_3339245
crossref_primary_10_1109_JSEN_2022_3230980
crossref_primary_10_1109_JSEN_2024_3351431
crossref_primary_10_1016_j_dsp_2024_104518
crossref_primary_10_1088_1361_6501_ad25dd
crossref_primary_10_1109_TIM_2024_3472781
crossref_primary_10_1109_JSEN_2022_3211007
crossref_primary_10_1016_j_psep_2025_107400
crossref_primary_10_1016_j_engappai_2025_111681
crossref_primary_10_1109_TIM_2024_3502784
crossref_primary_10_1155_2022_7979128
crossref_primary_10_1109_JSEN_2025_3563586
crossref_primary_10_1002_qre_3394
crossref_primary_10_1109_TNNLS_2024_3360030
crossref_primary_10_1016_j_compchemeng_2024_108707
crossref_primary_10_1016_j_jprocont_2025_103497
crossref_primary_10_1016_j_robot_2025_105112
Cites_doi 10.1017/9781108891530.013
10.1016/j.ifacol.2018.09.406
10.1016/j.jprocont.2019.11.004
10.1561/9781680836233
10.1016/j.chemolab.2018.11.007
10.1023/A:1020281327116
10.1109/TNNLS.2021.3085869
10.1109/TPAMI.2020.3015948
10.1016/j.conengprac.2020.104392
10.1109/MLSP.2019.8918926
10.1145/1390156.1390294
10.1109/TIE.2020.2984443
10.1016/j.micpro.2020.103063
10.1016/j.trc.2020.102622
10.1109/TIE.2019.2927197
10.1016/j.compchemeng.2007.07.005
10.1109/CVPR.2018.00577
10.1016/j.compchemeng.2008.12.012
10.1162/neco.2006.18.7.1527
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2021.3128562
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library (LUT)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 610
ExternalDocumentID 10_1109_JSEN_2021_3128562
9615202
Genre orig-research
GrantInformation_xml – fundername: Innovation Ability Promotion Project of Gansu Universities
  grantid: 2019B-038
– fundername: Backbone Fund of Youth Teachers’ Capability Promotion
  grantid: NWNU-LKQN2020-14
– fundername: Lanzhou Science and Technology Planning Projects
  grantid: 2018-01-58; 2017-4-101
– fundername: National Natural Science Foundation of China
  grantid: 71961028
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c293t-f44239ee14c06e0e340b70968b37b6bc4eed7f4ec65cae9b6c503db13fea88dd3
IEDL.DBID RIE
ISICitedReferencesCount 34
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000735528200070&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1530-437X
IngestDate Mon Jun 30 10:10:10 EDT 2025
Tue Nov 18 22:12:13 EST 2025
Sat Nov 29 06:39:06 EST 2025
Wed Aug 27 05:00:14 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-f44239ee14c06e0e340b70968b37b6bc4eed7f4ec65cae9b6c503db13fea88dd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9145-2309
PQID 2615165817
PQPubID 75733
PageCount 10
ParticipantIDs crossref_citationtrail_10_1109_JSEN_2021_3128562
proquest_journals_2615165817
crossref_primary_10_1109_JSEN_2021_3128562
ieee_primary_9615202
PublicationCentury 2000
PublicationDate 2022-Jan.1,-1
2022-1-1
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-Jan.1,-1
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref11
Kingma (ref10) 2013
Zhang (ref23)
ref2
ref1
ref17
Maaloe (ref18)
Dumoulin (ref16)
Ranzato (ref14); 9
Brock (ref22)
ref25
ref20
Li (ref26) 2015
ref21
ref28
Rezende (ref19)
ref27
ref29
ref8
Arjovsky (ref30)
ref7
ref9
ref4
ref3
ref6
ref5
Salakhutdinov (ref15); 5
Radford (ref24) 2015
References_xml – volume: 5
  start-page: 448
  volume-title: Proc. Int. Conf. Artif. Intell. Statist.
  ident: ref15
  article-title: Deep Boltzmann machines
– ident: ref11
  doi: 10.1017/9781108891530.013
– ident: ref17
  doi: 10.1016/j.ifacol.2018.09.406
– ident: ref27
  doi: 10.1016/j.jprocont.2019.11.004
– ident: ref28
  doi: 10.1561/9781680836233
– ident: ref3
  doi: 10.1016/j.chemolab.2018.11.007
– ident: ref13
  doi: 10.1023/A:1020281327116
– year: 2013
  ident: ref10
  article-title: Auto-encoding variational Bayes
  publication-title: arXiv:1312.6114
– ident: ref7
  doi: 10.1109/TNNLS.2021.3085869
– ident: ref25
  doi: 10.1109/TPAMI.2020.3015948
– start-page: 7354
  volume-title: Proc. ICML
  ident: ref23
  article-title: Self-attention generative adversarial networks
– ident: ref6
  doi: 10.1016/j.conengprac.2020.104392
– start-page: 3
  volume-title: Proc. ICLR
  ident: ref22
  article-title: Large scale GAN training for high fidelity natural image synthesis
– ident: ref20
  doi: 10.1109/MLSP.2019.8918926
– ident: ref9
  doi: 10.1145/1390156.1390294
– ident: ref5
  doi: 10.1109/TIE.2020.2984443
– year: 2015
  ident: ref26
  article-title: Generative moment matching networks
  publication-title: arXiv:1502.02761
– ident: ref29
  doi: 10.1016/j.micpro.2020.103063
– volume: 9
  start-page: 621
  volume-title: Proc. 13th Int. Conf. Artif. Intell. Statist.
  ident: ref14
  article-title: Factored 3-way restricted Boltzmann machines for modeling natural images
– ident: ref8
  doi: 10.1016/j.trc.2020.102622
– start-page: 1445
  volume-title: Proc. ICML
  ident: ref18
  article-title: Auxiliary deep generative models
– ident: ref1
  doi: 10.1109/TIE.2019.2927197
– ident: ref2
  doi: 10.1016/j.compchemeng.2007.07.005
– start-page: 2
  volume-title: Proc. ICLR
  ident: ref16
  article-title: Adversarially learned inference
– ident: ref21
  doi: 10.1109/CVPR.2018.00577
– ident: ref4
  doi: 10.1016/j.compchemeng.2008.12.012
– start-page: 1530
  volume-title: Proc. ICML
  ident: ref19
  article-title: Variational inference with normalizing flows
– year: 2015
  ident: ref24
  article-title: Unsupervised representation learning with deep convolutional generative adversarial networks
  publication-title: arXiv:1511.06434
– start-page: 214
  volume-title: Proc. ICML
  ident: ref30
  article-title: Wasserstein generative adversarial networks
– ident: ref12
  doi: 10.1162/neco.2006.18.7.1527
SSID ssj0019757
Score 2.478864
Snippet Challenges of process industry, which is characterized as hugeness of process variables in complexity of industrial environment, can be tackled effectively by...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 601
SubjectTerms Data models
data supplement
Datasets
Decoding
Feature extraction
Generative adversarial networks
Industries
Mathematical models
Model accuracy
Predictive models
Process variables
Sensors
Soft sensor
SVAE-WGAN
Training
Wasserstein generative adversarial network
Title SVAE-WGAN-Based Soft Sensor Data Supplement Method for Process Industry
URI https://ieeexplore.ieee.org/document/9615202
https://www.proquest.com/docview/2615165817
Volume 22
WOSCitedRecordID wos000735528200070&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore Digital Library (LUT)
  customDbUrl:
  eissn: 1558-1748
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019757
  issn: 1530-437X
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEB1UBPXgVxWrVXLwJEZ3N9lNcqxaFcEi1I_eliQ7RUFaaavgvzdJY1EUwdseElhmNpl5MzvvAexXhZJW8ZxmzBaUS1NRlWtOpbZGV8JT8E3EJkS7LbtddTMDh9NZGEQMP5_hkX8MvfxqYF99qexYufCbeebIWSGKyazWtGOgRGD1dAc4oZyJbuxgpok6vuq02g4JZqkDqJnMi-xbDAqiKj9u4hBezlf-92KrsBzTSNKc-H0NZrC_DktfyAXXYSHqmz--1-Cic99s0YeLZpueuLBVkY67fUnHQdjBkJzpsSZB3TOUCsl1EJUmLpslcYyARIGP9w24O2_dnl7SKKFArYvjY9rjnuAPMeU2KTBBxhMjHGqRhglTGMtdiBQ9jrbIrUZlCpsnrDIp66GWsqrYJsz1B33cAtJDlCbFVOWZ5QyFFhbT3GgHMJHlTNch-TRqaSO_uJe5eC4DzkhU6f1Qej-U0Q91OJhueZmQa_y1uOYNP10YbV6Hxqfnynj8RmXm8zSXW6Vi-_ddO7CY-TmGUEtpwNx4-Iq7MG_fxk-j4V74sj4A9z3J7g
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fTxQxEJ4QJEEfBEHDKUIffDJWuv2xbR9PPH4obEwO9d42bXcukpg7cxwm_Pe2vXLRSEh424c22cxsO_PN7HwfwJuutiZYqSgXoabS-I5a5SQ1LnjX6UTBtxCb0E1jRiP7ZQXeLWdhEDH_fIbv02Pu5XfTcJ1KZQc2hl-emCMfKSk5W0xrLXsGVmdez3iEGZVCj0oPs2L24NNw0EQsyKsIUblRNf8nCmVZlf_u4hxgjjYe9mqb8LQkkqS_8PwzWMHJFjz5i15wC9aLwvmPm204Hn7rD-j3435DP8TA1ZFhvH_JMILY6Yx8dHNHsr5nLhaS8ywrTWI-S8ogASkSHzfP4evR4OLwhBYRBRpiJJ_TsUwUf4iVDKxGhkIyryNuMV5oX_sgY5DUY4mhVsGh9XVQTHS-EmN0xnSdeAGrk-kEd4CMEY2vsLKKBylQOx2wUt5FiIlCCdcDdmvUNhSG8SR08bPNSIPZNvmhTX5oix968Ha55deCXuO-xdvJ8MuFxeY92L31XFsO4FXLU6YWs6tKv7x71z6sn1ycn7Vnp83nV_CYp6mGXFnZhdX57Bpfw1r4Pb-8mu3lr-wPo-LNNQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SVAE-WGAN-Based+Soft+Sensor+Data+Supplement+Method+for+Process+Industry&rft.jtitle=IEEE+sensors+journal&rft.au=Gao%2C+Shiwei&rft.au=Qiu%2C+Sulong&rft.au=Ma%2C+Zhongyu&rft.au=Tian%2C+Ran&rft.date=2022-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=22&rft.issue=1&rft.spage=601&rft_id=info:doi/10.1109%2FJSEN.2021.3128562&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon