Multi-Objective Two-Layer Robust Optimisation Model for Water Resource Allocation in the Basin: A Case Study of Yellow River Basin, China
The continuous growth of the social economy and the accelerated urbanisation process have led to a rising increase in the demand for water resources in river basins. The uneven temporal and spatial distribution of water resources has further exacerbated the contradiction between supply and demand. T...
Uloženo v:
| Vydáno v: | Water (Basel) Ročník 17; číslo 20; s. 3009 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
20.10.2025
|
| Témata: | |
| ISSN: | 2073-4441, 2073-4441 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The continuous growth of the social economy and the accelerated urbanisation process have led to a rising increase in the demand for water resources in river basins. The uneven temporal and spatial distribution of water resources has further exacerbated the contradiction between supply and demand. The traditional extensive water resource allocation model is no longer suitable for the diverse demands of sustainable development in river basins. Therefore, there is an urgent demand to determine how to reconcile the supply and demand of water resources in river basins to achieve a rational allocation. Taking the Yellow River Basin as an example, an optimal water allocation framework based on multi-objective robust optimisation method was proposed in this study. A robust constraint boundary conditions for the industrial, agricultural, construction and service, ecological, and social water demand were selected from the perspective of the economy–society–ecology nexus. Then, Latin hypercube sampling was adopted to modify the Monte Carlo method to improve the dispersion of sampling values for quantifying the uncertainty of water allocation parameters. Furthermore, a multi-dimensional spatial equilibrium optimal allocation combining adjustable robust optimisation and multi-objective optimisation was established. Finally, a multi-objective particle swarm optimisation algorithm based on a crossover operator was constructed to obtain the Pareto-optimal solution for multi-dimensional spatial equilibrium optimal allocation. The primary findings were as follows: (1) Parameter uncertainty had a significant effect on the provincial/regional revenues of water resources but has no obvious effect on basin revenue. (2) The uncertainty in runoff and parameters had a significant influence on decisions for optimal water allocation. The optimal volume of water purchased by different provinces (regions) varied greatly under different scenarios. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2073-4441 2073-4441 |
| DOI: | 10.3390/w17203009 |