Model Predictive Convex Programming for Constrained Vehicle Guidance

A new model predictive convex programming is proposed in this paper for state and input constrained vehicle guidance design. The proposed method defines a convex optimization framework considering a flexibly designed cost function subject to inequality constraints and a sensitivity relation between...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on aerospace and electronic systems Jg. 55; H. 5; S. 2487 - 2500
Hauptverfasser: Hong, Haichao, Maity, Arnab, Holzapfel, Florian, Tang, Shengjing
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.10.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0018-9251, 1557-9603
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A new model predictive convex programming is proposed in this paper for state and input constrained vehicle guidance design. The proposed method defines a convex optimization framework considering a flexibly designed cost function subject to inequality constraints and a sensitivity relation between state increments and input corrections. This formulated convex optimization problem can be solved in a computationally efficient manner. Simulation studies of nonlinear missile and aircraft landing guidance problems demonstrate the effectiveness of the proposed approach.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9251
1557-9603
DOI:10.1109/TAES.2018.2890375