Model Predictive Convex Programming for Constrained Vehicle Guidance

A new model predictive convex programming is proposed in this paper for state and input constrained vehicle guidance design. The proposed method defines a convex optimization framework considering a flexibly designed cost function subject to inequality constraints and a sensitivity relation between...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on aerospace and electronic systems Ročník 55; číslo 5; s. 2487 - 2500
Hlavní autoři: Hong, Haichao, Maity, Arnab, Holzapfel, Florian, Tang, Shengjing
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.10.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0018-9251, 1557-9603
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A new model predictive convex programming is proposed in this paper for state and input constrained vehicle guidance design. The proposed method defines a convex optimization framework considering a flexibly designed cost function subject to inequality constraints and a sensitivity relation between state increments and input corrections. This formulated convex optimization problem can be solved in a computationally efficient manner. Simulation studies of nonlinear missile and aircraft landing guidance problems demonstrate the effectiveness of the proposed approach.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9251
1557-9603
DOI:10.1109/TAES.2018.2890375