3-D SAR Data-Driven Imaging via Learned Low-Rank and Sparse Priors

In the research topic of three-dimensional (3-D) synthetic aperture radar (SAR) imaging, the sparsity-enforcing techniques offer promise in shortening the sensing time and improving the reconstruction accuracy. However, many of them only explore the sparse prior of 3-D SAR images, which leads to bia...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on geoscience and remote sensing Vol. 60; pp. 1 - 17
Main Authors: Wang, Mou, Wei, Shunjun, Zhou, Zichen, Shi, Jun, Zhang, Xiaoling, Guo, Yongxin
Format: Journal Article
Language:English
Published: New York IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0196-2892, 1558-0644
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In the research topic of three-dimensional (3-D) synthetic aperture radar (SAR) imaging, the sparsity-enforcing techniques offer promise in shortening the sensing time and improving the reconstruction accuracy. However, many of them only explore the sparse prior of 3-D SAR images, which leads to biased estimations in cases of non-sparse scenarios. To remedy this problem, we propose a new network with learned low-rank and sparse priors, i.e., LLRS-Net, to obtain improved reconstructions from sparsely sampled 3-D SAR echoes. In our scheme, a two-stage reconstruction algorithmic framework (LSRA) is derived based on sparse and low-rank priors, wherein the first stage recovers the measurements from their limited observations by exploring the low-rank prior, while the second estimates the final 3-D SAR images with a fast iterative optimization. Theoretically inspired by LRSA, the LLRS-Net is designed into a cascaded network structure. In LLRS-Net, the trainable weights serve as independent variables and control the algorithmic hyperparameters via regularizing functions, ensuring a well-conditioned updating tendency. By end-to-end training, the network weights are updated automatically under the guidance of a compound loss function constraining both the outputs of two stages. Finally, the methodology is validated on simulations and measured experiments. These results show that the proposed framework outperforms many state-of-the-art imaging algorithms in recovering 3-D SAR images from incomplete echo data.
AbstractList In the research topic of three-dimensional (3-D) synthetic aperture radar (SAR) imaging, the sparsity-enforcing techniques offer promise in shortening the sensing time and improving the reconstruction accuracy. However, many of them only explore the sparse prior of 3-D SAR images, which leads to biased estimations in cases of non-sparse scenarios. To remedy this problem, we propose a new network with learned low-rank and sparse priors, i.e., LLRS-Net, to obtain improved reconstructions from sparsely sampled 3-D SAR echoes. In our scheme, a two-stage reconstruction algorithmic framework (LSRA) is derived based on sparse and low-rank priors, wherein the first stage recovers the measurements from their limited observations by exploring the low-rank prior, while the second estimates the final 3-D SAR images with a fast iterative optimization. Theoretically inspired by LRSA, the LLRS-Net is designed into a cascaded network structure. In LLRS-Net, the trainable weights serve as independent variables and control the algorithmic hyperparameters via regularizing functions, ensuring a well-conditioned updating tendency. By end-to-end training, the network weights are updated automatically under the guidance of a compound loss function constraining both the outputs of two stages. Finally, the methodology is validated on simulations and measured experiments. These results show that the proposed framework outperforms many state-of-the-art imaging algorithms in recovering 3-D SAR images from incomplete echo data.
Author Shi, Jun
Zhou, Zichen
Wang, Mou
Wei, Shunjun
Zhang, Xiaoling
Guo, Yongxin
Author_xml – sequence: 1
  givenname: Mou
  orcidid: 0000-0003-3462-3989
  surname: Wang
  fullname: Wang, Mou
  email: wangmou@std.uestc.edu.cn
  organization: School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 2
  givenname: Shunjun
  orcidid: 0000-0001-8091-9540
  surname: Wei
  fullname: Wei, Shunjun
  email: weishunjun@uestc.edu.cn
  organization: School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 3
  givenname: Zichen
  orcidid: 0000-0003-0249-8423
  surname: Zhou
  fullname: Zhou, Zichen
  organization: School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 4
  givenname: Jun
  orcidid: 0000-0001-7676-8380
  surname: Shi
  fullname: Shi, Jun
  organization: School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 5
  givenname: Xiaoling
  orcidid: 0000-0003-2343-3055
  surname: Zhang
  fullname: Zhang, Xiaoling
  organization: School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 6
  givenname: Yongxin
  orcidid: 0000-0001-8842-5609
  surname: Guo
  fullname: Guo, Yongxin
  email: yongxin.guo@nus.edu.sg
  organization: Department of Electrical and Computer Engineering, National University of Singapore, Singapore
BookMark eNp9kM1OwkAURicGEwF9AONmEteDd37a6SwRFEmaaADXzbS9JYMwxWnB-PZCIC5cuLqbc76bnB7p-NojIbccBpyDeVhMZvOBACEGkutIJfEF6fIoShjESnVIF7iJmUiMuCK9plkBcBVx3SWPko3pfDijY9taNg5uj55ON3bp_JLunaUp2uCxpGn9xWbWf1DrSzrf2tAgfQuuDs01uazsusGb8-2T9-enxeiFpa-T6WiYskIY2TIsLWglKllYKznkqKRRZRWjKrmpII-TEnOMTVkoFHmhIAENiS5VXmiQBcg-uT_tbkP9ucOmzVb1LvjDy0zEWoAxSRwdKH2iilA3TcAqK1xrW1f7Nli3zjhkx2DZMVh2DJadgx1M_sfcBrex4ftf5-7kOET85Y3WkeZK_gBJB3Zt
CODEN IGRSD2
CitedBy_id crossref_primary_10_1109_MGRS_2024_3494754
crossref_primary_10_1109_TAP_2025_3547742
crossref_primary_10_1109_TGRS_2022_3210547
crossref_primary_10_1109_TNNLS_2022_3208252
crossref_primary_10_1109_TVT_2024_3398218
crossref_primary_10_1109_TAES_2024_3522868
crossref_primary_10_1109_JSEN_2025_3569231
crossref_primary_10_1109_JSTARS_2025_3533082
crossref_primary_10_1109_TGRS_2023_3259980
crossref_primary_10_1109_TMTT_2024_3479189
crossref_primary_10_1109_TGRS_2022_3221971
crossref_primary_10_1109_JSTARS_2024_3472845
Cites_doi 10.1109/LGRS.2014.2372319
10.1007/s11263-016-0930-5
10.1109/MSP.2014.2312834
10.1109/TGRS.2021.3110579
10.1109/TMI.2021.3054167
10.1109/TPAMI.2012.271
10.1109/TIP.2018.2821925
10.1109/MSP.2014.2312098
10.1109/MSP.2020.3016905
10.1109/TIP.2019.2927458
10.1109/TGRS.2012.2191293
10.1109/TSP.2017.2711501
10.1109/JSTARS.2013.2238891
10.1109/JSEN.2020.3025053
10.1109/CVPR.2018.00196
10.1109/TSP.2021.3076900
10.1109/TGRS.2021.3093307
10.1109/TGRS.1983.350489
10.1137/080738970
10.1016/j.isprsjprs.2021.03.004
10.1109/MGRS.2013.2248301
10.1109/LGRS.2015.2499445
10.1109/JSTARS.2020.3017487
10.1109/TGRS.2021.3073123
10.1109/TGRS.2021.3068405
10.1109/JPROC.2009.2037526
10.1109/MAES.2013.6575407
10.1016/j.neucom.2013.03.017
10.1109/TSP.2020.3032231
10.1016/j.isprsjprs.2015.10.003
10.1109/TGRS.2022.3147472
10.1117/12.876541
10.1109/TIP.2021.3104168
10.1109/TGRS.2020.3011631
10.1109/TMI.2021.3096218
10.1109/TNNLS.2020.2978017
10.2528/PIER11033105
10.1109/TMTT.2017.2772862
10.1109/JMW.2020.3035790
10.1049/el.2016.1168
10.1109/TGRS.2008.2001170
10.1109/5.726791
10.1109/8.855491
10.1109/JSTARS.2020.3014696
10.1109/TGRS.2021.3139914
10.1049/iet-rsn.2009.0235
10.3390/rs12203283
10.1002/9781119538875
10.1109/TGRS.2017.2771826
10.1109/TGRS.2014.2364525
10.1109/JSTARS.2021.3139594
10.1109/JSTARS.2013.2263309
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2022.3175486
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 17
ExternalDocumentID 10_1109_TGRS_2022_3175486
9775714
Genre orig-research
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2017-YFB0502700
  funderid: 10.13039/501100012166
– fundername: China Scholarship Council
  grantid: 202106070063
  funderid: 10.13039/501100004543
– fundername: National Natural Science Foundation of China
  grantid: 61671113; 61501098
  funderid: 10.13039/501100001809
– fundername: National Research Foundation, Singapore, through the AI Singapore Program
  grantid: AISG-100E-2019-042
  funderid: 10.13039/501100001381
– fundername: High-Resolution Earth Observation Youth Foundation
  grantid: GFZX04061502
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c293t-eda0742f3caa310be4394df6e4d19f0b68debe69dc4e2bc40807087d4bc703c03
IEDL.DBID RIE
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000804647900019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0196-2892
IngestDate Tue Aug 26 15:40:21 EDT 2025
Sat Nov 29 02:50:22 EST 2025
Tue Nov 18 22:37:15 EST 2025
Wed Aug 27 02:24:37 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-eda0742f3caa310be4394df6e4d19f0b68debe69dc4e2bc40807087d4bc703c03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0249-8423
0000-0003-2343-3055
0000-0003-3462-3989
0000-0001-7676-8380
0000-0001-8842-5609
0000-0001-8091-9540
PQID 2672099865
PQPubID 85465
PageCount 17
ParticipantIDs crossref_primary_10_1109_TGRS_2022_3175486
ieee_primary_9775714
crossref_citationtrail_10_1109_TGRS_2022_3175486
proquest_journals_2672099865
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
Curlander (ref1) 1991; 11
Qian (ref42) 2021
ref51
ref50
ref46
ref45
ref48
ref47
Jain (ref56); 23
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref30
ref33
ref32
ref2
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
Karakuş (ref31) 2019
References_xml – ident: ref21
  doi: 10.1109/LGRS.2014.2372319
– ident: ref53
  doi: 10.1007/s11263-016-0930-5
– ident: ref20
  doi: 10.1109/MSP.2014.2312834
– ident: ref47
  doi: 10.1109/TGRS.2021.3110579
– ident: ref39
  doi: 10.1109/TMI.2021.3054167
– ident: ref55
  doi: 10.1109/TPAMI.2012.271
– ident: ref14
  doi: 10.1109/TIP.2018.2821925
– ident: ref8
  doi: 10.1109/MSP.2014.2312098
– ident: ref38
  doi: 10.1109/MSP.2020.3016905
– ident: ref35
  doi: 10.1109/TIP.2019.2927458
– ident: ref3
  doi: 10.1109/TGRS.2012.2191293
– ident: ref30
  doi: 10.1109/TSP.2017.2711501
– ident: ref17
  doi: 10.1109/JSTARS.2013.2238891
– ident: ref48
  doi: 10.1109/JSEN.2020.3025053
– ident: ref44
  doi: 10.1109/CVPR.2018.00196
– ident: ref40
  doi: 10.1109/TSP.2021.3076900
– ident: ref45
  doi: 10.1109/TGRS.2021.3093307
– volume: 23
  start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref56
  article-title: Guaranteed rank minimization via singular value projection
– ident: ref5
  doi: 10.1109/TGRS.1983.350489
– ident: ref52
  doi: 10.1137/080738970
– ident: ref9
  doi: 10.1016/j.isprsjprs.2021.03.004
– year: 2019
  ident: ref31
  article-title: Ship wake detection in SAR images via sparse regularization
  publication-title: arXiv:1904.03309
– ident: ref2
  doi: 10.1109/MGRS.2013.2248301
– ident: ref26
  doi: 10.1109/LGRS.2015.2499445
– ident: ref28
  doi: 10.1109/JSTARS.2020.3017487
– ident: ref49
  doi: 10.1109/TGRS.2021.3073123
– ident: ref15
  doi: 10.1109/TGRS.2021.3068405
– year: 2021
  ident: ref42
  article-title: $\gamma$ -Net: Superresolving SAR tomographic inversion via deep learning
  publication-title: arXiv:2112.04211
– ident: ref23
  doi: 10.1109/JPROC.2009.2037526
– ident: ref12
  doi: 10.1109/MAES.2013.6575407
– ident: ref29
  doi: 10.1016/j.neucom.2013.03.017
– ident: ref33
  doi: 10.1109/TSP.2020.3032231
– ident: ref11
  doi: 10.1016/j.isprsjprs.2015.10.003
– ident: ref6
  doi: 10.1109/TGRS.2022.3147472
– ident: ref24
  doi: 10.1117/12.876541
– ident: ref41
  doi: 10.1109/TIP.2021.3104168
– ident: ref32
  doi: 10.1109/TGRS.2020.3011631
– ident: ref50
  doi: 10.1109/TMI.2021.3096218
– ident: ref36
  doi: 10.1109/TNNLS.2020.2978017
– ident: ref13
  doi: 10.2528/PIER11033105
– ident: ref51
  doi: 10.1109/TMTT.2017.2772862
– ident: ref10
  doi: 10.1109/JMW.2020.3035790
– ident: ref27
  doi: 10.1049/el.2016.1168
– ident: ref16
  doi: 10.1109/TGRS.2008.2001170
– ident: ref54
  doi: 10.1109/5.726791
– ident: ref18
  doi: 10.1109/8.855491
– ident: ref43
  doi: 10.1109/JSTARS.2020.3014696
– volume: 11
  year: 1991
  ident: ref1
  publication-title: Synthetic Aperture Radar
– ident: ref46
  doi: 10.1109/TGRS.2021.3139914
– ident: ref4
  doi: 10.1049/iet-rsn.2009.0235
– ident: ref7
  doi: 10.3390/rs12203283
– ident: ref19
  doi: 10.1002/9781119538875
– ident: ref34
  doi: 10.1109/TGRS.2017.2771826
– ident: ref25
  doi: 10.1109/TGRS.2014.2364525
– ident: ref37
  doi: 10.1109/JSTARS.2021.3139594
– ident: ref22
  doi: 10.1109/JSTARS.2013.2263309
SSID ssj0014517
Score 2.449386
Snippet In the research topic of three-dimensional (3-D) synthetic aperture radar (SAR) imaging, the sparsity-enforcing techniques offer promise in shortening the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms 3-D synthetic aperture radar (SAR) imaging
Algorithms
Computational modeling
deep unfolding
Echoes
fast iterative shrinkage/thresholding algorithm (FISTA)
Image reconstruction
Imaging
Imaging techniques
Independent variables
low-rank
matrix completion
millimeter-wave (mmW)
Optimization
Radar imaging
Radar polarimetry
SAR (radar)
Scattering
Synthetic aperture radar
Three-dimensional displays
Title 3-D SAR Data-Driven Imaging via Learned Low-Rank and Sparse Priors
URI https://ieeexplore.ieee.org/document/9775714
https://www.proquest.com/docview/2672099865
Volume 60
WOSCitedRecordID wos000804647900019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0644
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014517
  issn: 0196-2892
  databaseCode: RIE
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED7mUNAHf01xOiUPPonZujZr2sfpnAoyZFPwraTJBYbaje6H_75J1o2BIvjWh6SU-5q7-5J8dwCXmgnFeMApMp1SplRMzSriNNZChloYOqYj12yC93rR21v8XILrlRYGEd3lM6zbR3eWr0ZyZrfKGiZXaXHbtXqD83Ch1VqdGLBWs5BGh9SQCL84wWx6cePlvj8wTND36zZYMiubXotBrqnKD0_swkt3738ftg-7RRpJ2gvcD6CE2SHsrBUXPIQtd7lTTipwE9AOGbT7pCOmgnZy6-DI46frT0TmQ0FckVVU5Gn0RfsieyciU2QwNpwXyXM-HOWTI3jt3r3cPtCidwKVJoBPKSphWa8OpBAmg0vRKmCVDpGpZqy9NIyUgS-MlWTop5KZxJF7EVcslcYHSC84hnI2yvAECJcisEVrlNYmuWq2RICpiJH7kUq1CrAK3tKaiSwKi9v-Fh-JIxhenFgAEgtAUgBQhavVlPGiqsZfgyvW4quBhbGrUFtClhTrbpL4Ibda4Chsnf4-6wy27bsXmyg1KE_zGZ7DppxPh5P8wv1S36zCx-M
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_ED9QHv8Xp1Dz4JMZ1bdq0j-r8wjnGNsG3kiYXGGo3uk3_fZOsDkERfOtDQsv9mrv7JfndAZxoJhTjAafIdEaZUgk1q4jTRAsZaWHomI5dswneasXPz0l7Ds5mWhhEdJfP8Nw-urN8NZATu1VWM7lKyG3X6oWQMd-bqrVmZwYsrJfi6IgaGuGXZ5h1L6n1bjtdwwV9_9yGS2aF09-ikGur8sMXuwBzs_6_T9uAtTKRJBdT5DdhDvMtWP1WXnALltz1TjnahsuANkj3okMaYixoo7Aujty_uQ5F5L0viCuzioo0Bx-0I_IXInJFukPDepG0i_6gGO3A08117-qOlt0TqDQhfExRCct7dSCFMDlchlYDq3SETNUT7WVRrAyAUaIkQz-TzKSO3Iu5Ypk0XkB6wS7M54Mc94BwKQJbtkZpbdKreigCzESC3I9VplWAFfC-rJnKsrS47XDxmjqK4SWpBSC1AKQlABU4nU0ZTutq_DV421p8NrA0dgWqX5Cl5cobpX7ErRo4jsL932cdw_Jd77GZNu9bDwewYt8z3VKpwvy4mOAhLMr3cX9UHLnf6xNAzMsq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3-D+SAR+Data-Driven+Imaging+via+Learned+Low-Rank+and+Sparse+Priors&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Wang%2C+Mou&rft.au=Wei%2C+Shunjun&rft.au=Zhou%2C+Zichen&rft.au=Shi%2C+Jun&rft.date=2022&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=60&rft.spage=1&rft.epage=17&rft_id=info:doi/10.1109%2FTGRS.2022.3175486&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2022_3175486
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon