3-D SAR Data-Driven Imaging via Learned Low-Rank and Sparse Priors
In the research topic of three-dimensional (3-D) synthetic aperture radar (SAR) imaging, the sparsity-enforcing techniques offer promise in shortening the sensing time and improving the reconstruction accuracy. However, many of them only explore the sparse prior of 3-D SAR images, which leads to bia...
Uložené v:
| Vydané v: | IEEE transactions on geoscience and remote sensing Ročník 60; s. 1 - 17 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 0196-2892, 1558-0644 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In the research topic of three-dimensional (3-D) synthetic aperture radar (SAR) imaging, the sparsity-enforcing techniques offer promise in shortening the sensing time and improving the reconstruction accuracy. However, many of them only explore the sparse prior of 3-D SAR images, which leads to biased estimations in cases of non-sparse scenarios. To remedy this problem, we propose a new network with learned low-rank and sparse priors, i.e., LLRS-Net, to obtain improved reconstructions from sparsely sampled 3-D SAR echoes. In our scheme, a two-stage reconstruction algorithmic framework (LSRA) is derived based on sparse and low-rank priors, wherein the first stage recovers the measurements from their limited observations by exploring the low-rank prior, while the second estimates the final 3-D SAR images with a fast iterative optimization. Theoretically inspired by LRSA, the LLRS-Net is designed into a cascaded network structure. In LLRS-Net, the trainable weights serve as independent variables and control the algorithmic hyperparameters via regularizing functions, ensuring a well-conditioned updating tendency. By end-to-end training, the network weights are updated automatically under the guidance of a compound loss function constraining both the outputs of two stages. Finally, the methodology is validated on simulations and measured experiments. These results show that the proposed framework outperforms many state-of-the-art imaging algorithms in recovering 3-D SAR images from incomplete echo data. |
|---|---|
| AbstractList | In the research topic of three-dimensional (3-D) synthetic aperture radar (SAR) imaging, the sparsity-enforcing techniques offer promise in shortening the sensing time and improving the reconstruction accuracy. However, many of them only explore the sparse prior of 3-D SAR images, which leads to biased estimations in cases of non-sparse scenarios. To remedy this problem, we propose a new network with learned low-rank and sparse priors, i.e., LLRS-Net, to obtain improved reconstructions from sparsely sampled 3-D SAR echoes. In our scheme, a two-stage reconstruction algorithmic framework (LSRA) is derived based on sparse and low-rank priors, wherein the first stage recovers the measurements from their limited observations by exploring the low-rank prior, while the second estimates the final 3-D SAR images with a fast iterative optimization. Theoretically inspired by LRSA, the LLRS-Net is designed into a cascaded network structure. In LLRS-Net, the trainable weights serve as independent variables and control the algorithmic hyperparameters via regularizing functions, ensuring a well-conditioned updating tendency. By end-to-end training, the network weights are updated automatically under the guidance of a compound loss function constraining both the outputs of two stages. Finally, the methodology is validated on simulations and measured experiments. These results show that the proposed framework outperforms many state-of-the-art imaging algorithms in recovering 3-D SAR images from incomplete echo data. |
| Author | Shi, Jun Zhou, Zichen Wang, Mou Wei, Shunjun Zhang, Xiaoling Guo, Yongxin |
| Author_xml | – sequence: 1 givenname: Mou orcidid: 0000-0003-3462-3989 surname: Wang fullname: Wang, Mou email: wangmou@std.uestc.edu.cn organization: School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China – sequence: 2 givenname: Shunjun orcidid: 0000-0001-8091-9540 surname: Wei fullname: Wei, Shunjun email: weishunjun@uestc.edu.cn organization: School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China – sequence: 3 givenname: Zichen orcidid: 0000-0003-0249-8423 surname: Zhou fullname: Zhou, Zichen organization: School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China – sequence: 4 givenname: Jun orcidid: 0000-0001-7676-8380 surname: Shi fullname: Shi, Jun organization: School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China – sequence: 5 givenname: Xiaoling orcidid: 0000-0003-2343-3055 surname: Zhang fullname: Zhang, Xiaoling organization: School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China – sequence: 6 givenname: Yongxin orcidid: 0000-0001-8842-5609 surname: Guo fullname: Guo, Yongxin email: yongxin.guo@nus.edu.sg organization: Department of Electrical and Computer Engineering, National University of Singapore, Singapore |
| BookMark | eNp9kM1OwkAURicGEwF9AONmEteDd37a6SwRFEmaaADXzbS9JYMwxWnB-PZCIC5cuLqbc76bnB7p-NojIbccBpyDeVhMZvOBACEGkutIJfEF6fIoShjESnVIF7iJmUiMuCK9plkBcBVx3SWPko3pfDijY9taNg5uj55ON3bp_JLunaUp2uCxpGn9xWbWf1DrSzrf2tAgfQuuDs01uazsusGb8-2T9-enxeiFpa-T6WiYskIY2TIsLWglKllYKznkqKRRZRWjKrmpII-TEnOMTVkoFHmhIAENiS5VXmiQBcg-uT_tbkP9ucOmzVb1LvjDy0zEWoAxSRwdKH2iilA3TcAqK1xrW1f7Nli3zjhkx2DZMVh2DJadgx1M_sfcBrex4ftf5-7kOET85Y3WkeZK_gBJB3Zt |
| CODEN | IGRSD2 |
| CitedBy_id | crossref_primary_10_1109_MGRS_2024_3494754 crossref_primary_10_1109_TAP_2025_3547742 crossref_primary_10_1109_TGRS_2022_3210547 crossref_primary_10_1109_TNNLS_2022_3208252 crossref_primary_10_1109_TVT_2024_3398218 crossref_primary_10_1109_TAES_2024_3522868 crossref_primary_10_1109_JSEN_2025_3569231 crossref_primary_10_1109_JSTARS_2025_3533082 crossref_primary_10_1109_TGRS_2023_3259980 crossref_primary_10_1109_TMTT_2024_3479189 crossref_primary_10_1109_TGRS_2022_3221971 crossref_primary_10_1109_JSTARS_2024_3472845 |
| Cites_doi | 10.1109/LGRS.2014.2372319 10.1007/s11263-016-0930-5 10.1109/MSP.2014.2312834 10.1109/TGRS.2021.3110579 10.1109/TMI.2021.3054167 10.1109/TPAMI.2012.271 10.1109/TIP.2018.2821925 10.1109/MSP.2014.2312098 10.1109/MSP.2020.3016905 10.1109/TIP.2019.2927458 10.1109/TGRS.2012.2191293 10.1109/TSP.2017.2711501 10.1109/JSTARS.2013.2238891 10.1109/JSEN.2020.3025053 10.1109/CVPR.2018.00196 10.1109/TSP.2021.3076900 10.1109/TGRS.2021.3093307 10.1109/TGRS.1983.350489 10.1137/080738970 10.1016/j.isprsjprs.2021.03.004 10.1109/MGRS.2013.2248301 10.1109/LGRS.2015.2499445 10.1109/JSTARS.2020.3017487 10.1109/TGRS.2021.3073123 10.1109/TGRS.2021.3068405 10.1109/JPROC.2009.2037526 10.1109/MAES.2013.6575407 10.1016/j.neucom.2013.03.017 10.1109/TSP.2020.3032231 10.1016/j.isprsjprs.2015.10.003 10.1109/TGRS.2022.3147472 10.1117/12.876541 10.1109/TIP.2021.3104168 10.1109/TGRS.2020.3011631 10.1109/TMI.2021.3096218 10.1109/TNNLS.2020.2978017 10.2528/PIER11033105 10.1109/TMTT.2017.2772862 10.1109/JMW.2020.3035790 10.1049/el.2016.1168 10.1109/TGRS.2008.2001170 10.1109/5.726791 10.1109/8.855491 10.1109/JSTARS.2020.3014696 10.1109/TGRS.2021.3139914 10.1049/iet-rsn.2009.0235 10.3390/rs12203283 10.1002/9781119538875 10.1109/TGRS.2017.2771826 10.1109/TGRS.2014.2364525 10.1109/JSTARS.2021.3139594 10.1109/JSTARS.2013.2263309 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| DOI | 10.1109/TGRS.2022.3175486 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1558-0644 |
| EndPage | 17 |
| ExternalDocumentID | 10_1109_TGRS_2022_3175486 9775714 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Key Research and Development Program of China grantid: 2017-YFB0502700 funderid: 10.13039/501100012166 – fundername: China Scholarship Council grantid: 202106070063 funderid: 10.13039/501100004543 – fundername: National Natural Science Foundation of China grantid: 61671113; 61501098 funderid: 10.13039/501100001809 – fundername: National Research Foundation, Singapore, through the AI Singapore Program grantid: AISG-100E-2019-042 funderid: 10.13039/501100001381 – fundername: High-Resolution Earth Observation Youth Foundation grantid: GFZX04061502 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 Y6R AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| ID | FETCH-LOGICAL-c293t-eda0742f3caa310be4394df6e4d19f0b68debe69dc4e2bc40807087d4bc703c03 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 14 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000804647900019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0196-2892 |
| IngestDate | Tue Aug 26 15:40:21 EDT 2025 Sat Nov 29 02:50:22 EST 2025 Tue Nov 18 22:37:15 EST 2025 Wed Aug 27 02:24:37 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-eda0742f3caa310be4394df6e4d19f0b68debe69dc4e2bc40807087d4bc703c03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0249-8423 0000-0003-2343-3055 0000-0003-3462-3989 0000-0001-7676-8380 0000-0001-8842-5609 0000-0001-8091-9540 |
| PQID | 2672099865 |
| PQPubID | 85465 |
| PageCount | 17 |
| ParticipantIDs | crossref_primary_10_1109_TGRS_2022_3175486 ieee_primary_9775714 crossref_citationtrail_10_1109_TGRS_2022_3175486 proquest_journals_2672099865 |
| PublicationCentury | 2000 |
| PublicationDate | 20220000 2022-00-00 20220101 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – year: 2022 text: 20220000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on geoscience and remote sensing |
| PublicationTitleAbbrev | TGRS |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 Curlander (ref1) 1991; 11 Qian (ref42) 2021 ref51 ref50 ref46 ref45 ref48 ref47 Jain (ref56); 23 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref30 ref33 ref32 ref2 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 Karakuş (ref31) 2019 |
| References_xml | – ident: ref21 doi: 10.1109/LGRS.2014.2372319 – ident: ref53 doi: 10.1007/s11263-016-0930-5 – ident: ref20 doi: 10.1109/MSP.2014.2312834 – ident: ref47 doi: 10.1109/TGRS.2021.3110579 – ident: ref39 doi: 10.1109/TMI.2021.3054167 – ident: ref55 doi: 10.1109/TPAMI.2012.271 – ident: ref14 doi: 10.1109/TIP.2018.2821925 – ident: ref8 doi: 10.1109/MSP.2014.2312098 – ident: ref38 doi: 10.1109/MSP.2020.3016905 – ident: ref35 doi: 10.1109/TIP.2019.2927458 – ident: ref3 doi: 10.1109/TGRS.2012.2191293 – ident: ref30 doi: 10.1109/TSP.2017.2711501 – ident: ref17 doi: 10.1109/JSTARS.2013.2238891 – ident: ref48 doi: 10.1109/JSEN.2020.3025053 – ident: ref44 doi: 10.1109/CVPR.2018.00196 – ident: ref40 doi: 10.1109/TSP.2021.3076900 – ident: ref45 doi: 10.1109/TGRS.2021.3093307 – volume: 23 start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref56 article-title: Guaranteed rank minimization via singular value projection – ident: ref5 doi: 10.1109/TGRS.1983.350489 – ident: ref52 doi: 10.1137/080738970 – ident: ref9 doi: 10.1016/j.isprsjprs.2021.03.004 – year: 2019 ident: ref31 article-title: Ship wake detection in SAR images via sparse regularization publication-title: arXiv:1904.03309 – ident: ref2 doi: 10.1109/MGRS.2013.2248301 – ident: ref26 doi: 10.1109/LGRS.2015.2499445 – ident: ref28 doi: 10.1109/JSTARS.2020.3017487 – ident: ref49 doi: 10.1109/TGRS.2021.3073123 – ident: ref15 doi: 10.1109/TGRS.2021.3068405 – year: 2021 ident: ref42 article-title: $\gamma$ -Net: Superresolving SAR tomographic inversion via deep learning publication-title: arXiv:2112.04211 – ident: ref23 doi: 10.1109/JPROC.2009.2037526 – ident: ref12 doi: 10.1109/MAES.2013.6575407 – ident: ref29 doi: 10.1016/j.neucom.2013.03.017 – ident: ref33 doi: 10.1109/TSP.2020.3032231 – ident: ref11 doi: 10.1016/j.isprsjprs.2015.10.003 – ident: ref6 doi: 10.1109/TGRS.2022.3147472 – ident: ref24 doi: 10.1117/12.876541 – ident: ref41 doi: 10.1109/TIP.2021.3104168 – ident: ref32 doi: 10.1109/TGRS.2020.3011631 – ident: ref50 doi: 10.1109/TMI.2021.3096218 – ident: ref36 doi: 10.1109/TNNLS.2020.2978017 – ident: ref13 doi: 10.2528/PIER11033105 – ident: ref51 doi: 10.1109/TMTT.2017.2772862 – ident: ref10 doi: 10.1109/JMW.2020.3035790 – ident: ref27 doi: 10.1049/el.2016.1168 – ident: ref16 doi: 10.1109/TGRS.2008.2001170 – ident: ref54 doi: 10.1109/5.726791 – ident: ref18 doi: 10.1109/8.855491 – ident: ref43 doi: 10.1109/JSTARS.2020.3014696 – volume: 11 year: 1991 ident: ref1 publication-title: Synthetic Aperture Radar – ident: ref46 doi: 10.1109/TGRS.2021.3139914 – ident: ref4 doi: 10.1049/iet-rsn.2009.0235 – ident: ref7 doi: 10.3390/rs12203283 – ident: ref19 doi: 10.1002/9781119538875 – ident: ref34 doi: 10.1109/TGRS.2017.2771826 – ident: ref25 doi: 10.1109/TGRS.2014.2364525 – ident: ref37 doi: 10.1109/JSTARS.2021.3139594 – ident: ref22 doi: 10.1109/JSTARS.2013.2263309 |
| SSID | ssj0014517 |
| Score | 2.449386 |
| Snippet | In the research topic of three-dimensional (3-D) synthetic aperture radar (SAR) imaging, the sparsity-enforcing techniques offer promise in shortening the... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | 3-D synthetic aperture radar (SAR) imaging Algorithms Computational modeling deep unfolding Echoes fast iterative shrinkage/thresholding algorithm (FISTA) Image reconstruction Imaging Imaging techniques Independent variables low-rank matrix completion millimeter-wave (mmW) Optimization Radar imaging Radar polarimetry SAR (radar) Scattering Synthetic aperture radar Three-dimensional displays |
| Title | 3-D SAR Data-Driven Imaging via Learned Low-Rank and Sparse Priors |
| URI | https://ieeexplore.ieee.org/document/9775714 https://www.proquest.com/docview/2672099865 |
| Volume | 60 |
| WOSCitedRecordID | wos000804647900019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0644 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014517 issn: 0196-2892 databaseCode: RIE dateStart: 19800101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD5MUdAHL5vivJEHn8TMNsnS9lGdNxAZ24S9ldwKQ-1G1-nfN8nqGCiCb31ISjlfei5JvvMBnNmcOwkyJbFibYVZwjhOpJY4ooSakHBBpfBiE9HzczwcJt0aXCy4MMYYf_nMtNyjP8vXYzVzW2WXNldpR061eiWK-JyrtTgxYO2wokZzbIsIUp1ghkFyObjv9W0lSEjLBUvmaNNLMciLqvzwxD683G3_78N2YKtKI9HVHPddqJm8DptLzQXrsO4vd6ppA64p7qD-VQ91RClwp3AODj2-e30i9DESyDdZNRo9jT9xT-SvSOQa9Se25jWoW4zGxXQPXu5uBzcPuNJOwMoG8BIbLVzVm1ElhM3gpHEMWJ1xw3SYZIHksbbw8UQrZohUzCaOURBHmkllfYAK6D6s5uPcHACShtJQU01kqJlRLFaCuc5Nkmhh85msCcG3NVNVNRZ3-hZvqS8wgiR1AKQOgLQCoAnniymTeVeNvwY3nMUXAytjN-H4G7K0-u-mKeGR4wLHvH34-6wj2HDvnm-iHMNqWczMCaypj3I0LU79kvoCrVjGjA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JSwMxFH6IC-rBXaxrDp7E2Jkksx2rtSrWIm0Fb0O2gaJOy3Tx75ukYykogrc5JMzwvsxbknzvAzg3OXfiZVJgyQKJWcJCnAglcEQJ1T4JORXciU1ErVb8-po8L8DljAujtXaXz_SVfXRn-aovx3arrGpylSCyqtVLAWPEm7K1ZmcGLPBLcnSITRlByjNM30uq3bt2x9SChFzZcMkscXouCjlZlR--2AWYxub_Pm0LNspEEtWmyG_Dgs53YH2uveAOrLjrnXK4C9cU11Gn1kZ1PuK4XlgXhx4-nEIRmvQ4cm1WtULN_idu8_wN8VyhzsBUvRo9F71-MdyDl8Zt9-Yel-oJWJoQPsJacVv3ZlRybnI4oS0HVmWhZspPMk-EsTIAhomSTBMhmUkdIy-OFBPSeAHp0X1YzPu5PgAkNKW-oooIXzEtWSw5s72bBFHcZDRZBbxva6aybC1uFS7eU1dieElqAUgtAGkJQAUuZlMG074afw3etRafDSyNXYHjb8jS8s8bpiSMLBs4DoPD32edwep996mZNh9aj0ewZt8z3VI5hsVRMdYnsCwno96wOHXL6wsvQMnT |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3-D+SAR+Data-Driven+Imaging+via+Learned+Low-Rank+and+Sparse+Priors&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Wang%2C+Mou&rft.au=Wei%2C+Shunjun&rft.au=Zhou%2C+Zichen&rft.au=Shi%2C+Jun&rft.date=2022&rft.pub=IEEE&rft.issn=0196-2892&rft.volume=60&rft.spage=1&rft.epage=17&rft_id=info:doi/10.1109%2FTGRS.2022.3175486&rft.externalDocID=9775714 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |