Identification of Vulnerable Lines in Smart Grid Systems Based on Affinity Propagation Clustering

In smart grid systems, vulnerable lines may lead to cascading failures which can cause large-scale blackouts. Successfully detecting vulnerable lines can increase the stability of the smart grid systems and reduce the risk of cascading failures. By modeling a smart grid system into a directed graph,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE internet of things journal Jg. 6; H. 3; S. 5163 - 5171
Hauptverfasser: Gao, Qinghe, Wang, Yawei, Cheng, Xiuzhen, Yu, Jiguo, Chen, Xi, Jing, Tao
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 01.06.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2327-4662, 2327-4662
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In smart grid systems, vulnerable lines may lead to cascading failures which can cause large-scale blackouts. Successfully detecting vulnerable lines can increase the stability of the smart grid systems and reduce the risk of cascading failures. By modeling a smart grid system into a directed graph, we investigate the problem of vulnerable line identification from a clustering perspective. By jointly considering the topological parameters and the electrical properties, we propose an affinity propagation-based bus clustering algorithm to classify buses into clusters, where the center of each cluster represents the most influential bus in each partition. According to the clustering results, we design a vulnerable line identification scheme, which captures different types of potential critical lines in the smart grid system. Experiments over the IEEE-39 bus system demonstrate the effectiveness and correctness of our proposed algorithm.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2327-4662
2327-4662
DOI:10.1109/JIOT.2019.2897434