An Attention Encoder-Decoder Network Based on Generative Adversarial Network for Remote Sensing Image Dehazing

Remote sensing image dehazing is a difficult problem for its complex characteristics. It can be regarded as the preprocessing of high-level tasks of remote sensing images. To remove haze from the hazy remote sensing image, an encoder-decoder based on generative adversarial network is proposed. It fi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal Jg. 22; H. 11; S. 10890 - 10900
Hauptverfasser: Zhao, Liquan, Zhang, Yupeng, Cui, Ying
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.06.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1530-437X, 1558-1748
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Remote sensing image dehazing is a difficult problem for its complex characteristics. It can be regarded as the preprocessing of high-level tasks of remote sensing images. To remove haze from the hazy remote sensing image, an encoder-decoder based on generative adversarial network is proposed. It first learns the low-frequency information of the image, and then learns the high-frequency information of the image. The skip connection is also added in the network to avoid losing information. To further improve the ability of learning more useful information, a multi-scale attention module is proposed. Meanwhile, a CBlock module is also designed to extract more feature information. It can capture different size of receptive fields. In order to reduce the computational pressure of the network, a distillation module is used in the network. Inspired by multi-scale network, an enhance module is designed and introduced it in the end of the network to further improve the dehazing ability of the network by integrating context information on multi-scale. We compared with five methods and our proposed method on RICE dataset. Experimental results show that our method achieves the best effect, both qualitatively and quantitatively.
AbstractList Remote sensing image dehazing is a difficult problem for its complex characteristics. It can be regarded as the preprocessing of high-level tasks of remote sensing images. To remove haze from the hazy remote sensing image, an encoder-decoder based on generative adversarial network is proposed. It first learns the low-frequency information of the image, and then learns the high-frequency information of the image. The skip connection is also added in the network to avoid losing information. To further improve the ability of learning more useful information, a multi-scale attention module is proposed. Meanwhile, a CBlock module is also designed to extract more feature information. It can capture different size of receptive fields. In order to reduce the computational pressure of the network, a distillation module is used in the network. Inspired by multi-scale network, an enhance module is designed and introduced it in the end of the network to further improve the dehazing ability of the network by integrating context information on multi-scale. We compared with five methods and our proposed method on RICE dataset. Experimental results show that our method achieves the best effect, both qualitatively and quantitatively.
Author Zhang, Yupeng
Zhao, Liquan
Cui, Ying
Author_xml – sequence: 1
  givenname: Liquan
  orcidid: 0000-0002-9499-1911
  surname: Zhao
  fullname: Zhao, Liquan
  email: zhao_liquan@163.com
  organization: Key Laboratory of Modern Power System Simulation and Control and Renewable Energy Technology, Ministry of Education, Northeast Electric Power University, Jilin, China
– sequence: 2
  givenname: Yupeng
  surname: Zhang
  fullname: Zhang, Yupeng
  email: zhang_yupeng2021@163.com
  organization: Key Laboratory of Modern Power System Simulation and Control and Renewable Energy Technology, Ministry of Education, Northeast Electric Power University, Jilin, China
– sequence: 3
  givenname: Ying
  surname: Cui
  fullname: Cui, Ying
  email: cuiying202107@163.com
  organization: Guangdong Electric Power Corporation Zhuhai Power Supply Bureau, Zhuhai, China
BookMark eNp9kD1PwzAQhi1UJNrCD0AslphT_NHEyRjaAkUVSJSBLXKcMxhaG2wXBL-ehKIODEzvnfS8d9IzQD3rLCB0TMmIUlKcXS9nNyNGGBtxKhjlbA_1aZrmCRXjvNfNnCRjLh4O0CCEZ0JoIVLRR7a0uIwRbDTO4plVrgGfTOEn8Q3ED-df8LkM0OAWuAQLXkbzDrhs3sEH6Y1c7TjtPL6DtYuAl2CDsY94vpaPgKfwJL_a9RDta7kKcPSbQ3R_MbufXCWL28v5pFwkihU8JjCWNVE5rQvgaaGUULWgedo0WpO6ZllRg1ZM5qkiLM8yqIVSQLRONc14CnyITrdnX71720CI1bPbeNt-rFgmGMkLmtGWEltKeReCB10pE2UnInppVhUlVee26txWndvq123bpH-ar96spf_8t3Oy7RgA2PGFyDLOCP8GeCmIkg
CODEN ISJEAZ
CitedBy_id crossref_primary_10_1109_JSEN_2024_3355388
crossref_primary_10_1038_s41598_024_83088_x
crossref_primary_10_1109_ACCESS_2024_3459588
crossref_primary_10_1371_journal_pone_0271225
crossref_primary_10_1007_s11042_024_18112_3
crossref_primary_10_1007_s00500_022_07586_8
crossref_primary_10_1080_01431161_2024_2394236
crossref_primary_10_1109_JSEN_2023_3348097
crossref_primary_10_32604_cmes_2024_049737
crossref_primary_10_1016_j_inffus_2023_102151
crossref_primary_10_1109_JSEN_2023_3256524
crossref_primary_10_1109_JSTARS_2023_3241157
crossref_primary_10_1016_j_imavis_2024_105212
crossref_primary_10_3390_app132212236
crossref_primary_10_3390_electronics13193826
crossref_primary_10_1002_ese3_1329
crossref_primary_10_3233_JIFS_230893
crossref_primary_10_1016_j_patrec_2024_10_013
crossref_primary_10_1109_JSTARS_2024_3356513
crossref_primary_10_1007_s11227_024_06498_8
crossref_primary_10_1007_s11063_023_11301_5
crossref_primary_10_1109_ACCESS_2023_3335618
crossref_primary_10_3390_app15105374
crossref_primary_10_1002_cpe_7155
crossref_primary_10_1016_j_eswa_2022_119041
crossref_primary_10_1016_j_jvcir_2024_104145
crossref_primary_10_1016_j_scs_2022_104089
crossref_primary_10_1016_j_sigpro_2024_109768
crossref_primary_10_1016_j_compbiomed_2022_105910
crossref_primary_10_1109_JSTARS_2024_3454754
crossref_primary_10_1016_j_solener_2022_06_046
crossref_primary_10_3390_s23218932
crossref_primary_10_1016_j_asoc_2025_112962
crossref_primary_10_1109_JSEN_2025_3555446
crossref_primary_10_1109_ACCESS_2022_3181147
crossref_primary_10_1007_s10462_023_10517_0
crossref_primary_10_1109_JSEN_2023_3266653
Cites_doi 10.1109/TGRS.2021.3067913
10.1609/aaai.v34i07.6865
10.1109/TGRS.2021.3095922
10.1109/TIP.2003.819861
10.1109/TIP.2015.2446191
10.3156/jsoft.29.5_177_2
10.1109/JSEN.2020.2981719
10.3390/rs13122273
10.1109/CVPRW.2018.00127
10.1109/ACSSC.2003.1292216
10.1109/ICCV.2017.511
10.1109/TIM.2021.3067221
10.1109/TPAMI.2020.2969348
10.1109/TPAMI.2010.168
10.1109/TGRS.2020.3016922
10.3390/rs13204180
10.1109/TIM.2020.3002277
10.1109/JSEN.2021.3118376
10.1109/TPAMI.2020.3042298
10.1109/CVPR.2019.00835
10.1109/TCSVT.2020.3046625
10.1016/j.inffus.2020.10.008
10.1109/WACV.2019.00151
10.1109/TIP.2022.3140609
10.1016/j.neunet.2020.09.001
10.1109/JSEN.2020.3033713
10.1109/TIP.2016.2598681
10.1109/TIM.2021.3092510
10.3390/rs13204074
10.1109/TPAMI.2021.3051099
10.1109/CVPR.2018.00337
10.1016/j.isprsjprs.2020.12.010
10.1109/CVPR.2016.185
10.1109/TIM.2019.2915404
10.1609/aaai.v34i07.6701
10.1016/j.rse.2021.112313
10.1038/s43017-020-00122-y
10.1109/CVPR.2019.00453
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2022.3172132
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 10900
ExternalDocumentID 10_1109_JSEN_2022_3172132
9766320
Genre orig-research
GrantInformation_xml – fundername: Research Foundation of Education Bureau of Jilin Province
  grantid: JJKH20220054KJ; JJKH20210095KJ
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c293t-e4ab0c81b9e359cc7cb7185ddff0bb269befc2a85c02866eb7cce0ff5f1635e3
IEDL.DBID RIE
ISICitedReferencesCount 47
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000804789800089&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1530-437X
IngestDate Mon Jun 30 10:11:55 EDT 2025
Sat Nov 29 06:39:15 EST 2025
Tue Nov 18 21:47:44 EST 2025
Wed Aug 27 02:24:37 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-e4ab0c81b9e359cc7cb7185ddff0bb269befc2a85c02866eb7cce0ff5f1635e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9499-1911
PQID 2672089161
PQPubID 75733
PageCount 11
ParticipantIDs proquest_journals_2672089161
ieee_primary_9766320
crossref_citationtrail_10_1109_JSEN_2022_3172132
crossref_primary_10_1109_JSEN_2022_3172132
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
Lin (ref38) 2019
ref2
ref1
ref17
ref39
ref16
ref19
ref18
ref24
ref23
Wenlong (ref25)
ref26
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref5
  doi: 10.1109/TGRS.2021.3067913
– ident: ref20
  doi: 10.1609/aaai.v34i07.6865
– ident: ref28
  doi: 10.1109/TGRS.2021.3095922
– ident: ref39
  doi: 10.1109/TIP.2003.819861
– ident: ref12
  doi: 10.1109/TIP.2015.2446191
– ident: ref22
  doi: 10.3156/jsoft.29.5_177_2
– ident: ref14
  doi: 10.1109/JSEN.2020.2981719
– ident: ref29
  doi: 10.3390/rs13122273
– ident: ref32
  doi: 10.1109/CVPRW.2018.00127
– ident: ref40
  doi: 10.1109/ACSSC.2003.1292216
– ident: ref17
  doi: 10.1109/ICCV.2017.511
– ident: ref7
  doi: 10.1109/TIM.2021.3067221
– ident: ref36
  doi: 10.1109/TPAMI.2020.2969348
– ident: ref11
  doi: 10.1109/TPAMI.2010.168
– ident: ref27
  doi: 10.1109/TGRS.2020.3016922
– ident: ref30
  doi: 10.3390/rs13204180
– ident: ref8
  doi: 10.1109/TIM.2020.3002277
– ident: ref37
  doi: 10.1109/JSEN.2021.3118376
– ident: ref26
  doi: 10.1109/TPAMI.2020.3042298
– ident: ref35
  doi: 10.1109/CVPR.2019.00835
– ident: ref19
  doi: 10.1109/TCSVT.2020.3046625
– ident: ref3
  doi: 10.1016/j.inffus.2020.10.008
– ident: ref18
  doi: 10.1109/WACV.2019.00151
– ident: ref21
  doi: 10.1109/TIP.2022.3140609
– ident: ref24
  doi: 10.1016/j.neunet.2020.09.001
– start-page: 3096
  volume-title: Proc. IEEE Int. Conf. Comput. Vis.(ICCV)
  ident: ref25
  article-title: RankSRGAN: Generative adversarial networks with ranker for image super-resolution
– ident: ref15
  doi: 10.1109/JSEN.2020.3033713
– ident: ref16
  doi: 10.1109/TIP.2016.2598681
– ident: ref10
  doi: 10.1109/TIM.2021.3092510
– ident: ref31
  doi: 10.3390/rs13204074
– ident: ref6
  doi: 10.1109/TPAMI.2021.3051099
– ident: ref33
  doi: 10.1109/CVPR.2018.00337
– ident: ref2
  doi: 10.1016/j.isprsjprs.2020.12.010
– ident: ref13
  doi: 10.1109/CVPR.2016.185
– ident: ref9
  doi: 10.1109/TIM.2019.2915404
– ident: ref34
  doi: 10.1609/aaai.v34i07.6701
– ident: ref1
  doi: 10.1016/j.rse.2021.112313
– year: 2019
  ident: ref38
  article-title: A remote sensing image dataset for cloud removal
  publication-title: arXiv:1901.00600
– ident: ref4
  doi: 10.1038/s43017-020-00122-y
– ident: ref23
  doi: 10.1109/CVPR.2019.00453
SSID ssj0019757
Score 2.531053
Snippet Remote sensing image dehazing is a difficult problem for its complex characteristics. It can be regarded as the preprocessing of high-level tasks of remote...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 10890
SubjectTerms Atmospheric modeling
Coders
Distillation
encoder-decoder
Encoders-Decoders
Feature extraction
generative adversarial network
Generative adversarial networks
Haze
Learning systems
Modules
multi-scale attention module
Remote sensing
Remote sensing image dehazing
Scattering
Task complexity
Training
Title An Attention Encoder-Decoder Network Based on Generative Adversarial Network for Remote Sensing Image Dehazing
URI https://ieeexplore.ieee.org/document/9766320
https://www.proquest.com/docview/2672089161
Volume 22
WOSCitedRecordID wos000804789800089&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 1558-1748
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019757
  issn: 1530-437X
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5UBPXgW1xf5OBJrMb0kc1x1RX1sIh62FtpkokKWmW3Cv57J2ktiiJ4ag-TUvplMjPN5PsAdg16ihByQOWoXE1cGkeFkCoSqVFWu4wnsQliE3Iw6A6H6moC9tuzMIgYms_wwN-GvXz7bF79r7JDCp1ZLKhAn5Qyq89qtTsGSgZWT3JgHiWxHDY7mEdcHV7e9AdUCQpBBSoVPLH4FoOCqMqPlTiEl7OF_73YIsw3aSTr1bgvwQSWyzD3hVxwGWYaffP79xUoeyXrVVXd2sj6pT_IPopOMVzZoG4FZ8cU0Swjg5qL2i-ELAg2jws_TVs7ynPZNRLGyG58_3t5xy6eaF1ip3jv2arvVuH2rH97ch41SguRoXBfRZgUmhvKYBXGqTJGGk0xK7XWOa61yJRGZ0TRTQ2lI1mGWhqD3LnUUTqXYrwGU-VzievAUnqIFrqw3NpEF1Jx2zWZ1l7ZmvzddoB_fvrcNCzkXgzjMQ_VCFe5Ryv3aOUNWh3Ya4e81BQcfxmveHhawwaZDmx94ps3TjrORSYF71J-fLTx-6hNmPXPrjvDtmCqGr3iNkybt-phPNoJ8-8D81DZGw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0hqAQc2vIlttDWB06IgHHiZH3cwiIoNEKwh71FsT1ekCBUu6ES_56xE6IiUKWeksM4ifIynpl4_B7AjkFPEUIOqByVq4mTcVSKTEVCGmW1S3kSmyA2keV5fzxWl3Ow1-2FQcTQfIb7_jSs5dsH8-h_lR1Q6ExjQQX6gkwSwZvdWt2agcoCrye5MI-SOBu3a5iHXB38vB7mVAsKQSUqlTyxeBWFgqzKm7k4BJiTT__3aJ_hY5tIskGD_ArMYbUKy3_RC67CYqtwfvO0BtWgYoO6bpob2bDyW9mn0TGGI8ubZnD2g2KaZWTQsFH7qZAFyeZZ6T_Uzo4yXXaFhDKya98BX03Y2T3NTOwYbzxf9WQdRifD0dFp1GotRIYCfh1hUmpuKIdVGEtlTGY0RS1prXNca5Eqjc6Isi8NJSRpijozBrlz0lFCJzHegPnqocJNYJIuooUuLbc20WWmuO2bVGuvbU0eb3vAX159YVoeci-HcVeEeoSrwqNVeLSKFq0e7HZDfjckHP8yXvPwdIYtMj3YfsG3aN10Vog0E7xPGfLhl_dHfYfF09Gvi-LiLD_fgiV_n6ZPbBvm6-kjfoUP5k99O5t-C9_iM2Ny3GI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Attention+Encoder-Decoder+Network+Based+on+Generative+Adversarial+Network+for+Remote+Sensing+Image+Dehazing&rft.jtitle=IEEE+sensors+journal&rft.au=Zhao%2C+Liquan&rft.au=Zhang%2C+Yupeng&rft.au=Cui%2C+Ying&rft.date=2022-06-01&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=22&rft.issue=11&rft.spage=10890&rft.epage=10900&rft_id=info:doi/10.1109%2FJSEN.2022.3172132&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSEN_2022_3172132
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon