Hyperspectral Unmixing for Additive Nonlinear Models With a 3-D-CNN Autoencoder Network
Spectral unmixing is an important task in hyperspectral image processing for separating the mixed spectral data pertaining to various materials observed aiming at analyzing the material components in observed pixels. Recently, nonlinear spectral unmixing has received particular attention in hyperspe...
Saved in:
| Published in: | IEEE transactions on geoscience and remote sensing Vol. 60; pp. 1 - 15 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 0196-2892, 1558-0644 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Spectral unmixing is an important task in hyperspectral image processing for separating the mixed spectral data pertaining to various materials observed aiming at analyzing the material components in observed pixels. Recently, nonlinear spectral unmixing has received particular attention in hyperspectral image processing, as there are many situations in which the linear mixture model may not be appropriate and could be advantageously replaced by a nonlinear one. Existing nonlinear unmixing approaches are often based on specific assumptions on the nonlinearity and can be less effective when used for scenes with unknown nonlinearity. This article presents an unsupervised nonlinear spectral unmixing method that addresses a general model that consists of a linear mixture part and an additive nonlinear mixture part. The structure of a deep autoencoder network, which has a clear physical interpretation, is specifically designed to achieve this purpose. Moreover, a convolutional neural network (CNN) is used to capture the spectral-spatial priors from hyperspectral data. Extensive experiments with synthetic and real data illustrate the generality and effectiveness of this scheme compared with state-of-the-art methods. |
|---|---|
| AbstractList | Spectral unmixing is an important task in hyperspectral image processing for separating the mixed spectral data pertaining to various materials observed aiming at analyzing the material components in observed pixels. Recently, nonlinear spectral unmixing has received particular attention in hyperspectral image processing, as there are many situations in which the linear mixture model may not be appropriate and could be advantageously replaced by a nonlinear one. Existing nonlinear unmixing approaches are often based on specific assumptions on the nonlinearity and can be less effective when used for scenes with unknown nonlinearity. This article presents an unsupervised nonlinear spectral unmixing method that addresses a general model that consists of a linear mixture part and an additive nonlinear mixture part. The structure of a deep autoencoder network, which has a clear physical interpretation, is specifically designed to achieve this purpose. Moreover, a convolutional neural network (CNN) is used to capture the spectral-spatial priors from hyperspectral data. Extensive experiments with synthetic and real data illustrate the generality and effectiveness of this scheme compared with state-of-the-art methods. |
| Author | Rahardja, Susanto Zhao, Min Wang, Mou Chen, Jie |
| Author_xml | – sequence: 1 givenname: Min surname: Zhao fullname: Zhao, Min email: minzhao@mail.nwpu.edu.cn organization: School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an, China – sequence: 2 givenname: Mou orcidid: 0000-0002-6476-2501 surname: Wang fullname: Wang, Mou email: mangmou21@mail.nwpu.edu.cn organization: School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an, China – sequence: 3 givenname: Jie orcidid: 0000-0003-2306-8860 surname: Chen fullname: Chen, Jie email: dr.jie.chen@ieee.org organization: School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an, China – sequence: 4 givenname: Susanto orcidid: 0000-0003-0831-6934 surname: Rahardja fullname: Rahardja, Susanto email: susantorahardja@ieee.org organization: School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an, China |
| BookMark | eNp9kEFPAjEQhRuDiYj-AOOliefFTnfL7h4JKpggJorhuOm2s1pcWuwWlX_vEogHD57mMO_Nm_edko51Fgm5ANYHYPn1fPz03OeMQz9meZYm4oh0QYgsYoMk6ZAug3wQ8SznJ-S0aZaMQSIg7ZLFZLtG36xRBS9r-mJX5tvYV1o5T4dam2A-kc6crY1F6emD01g3dGHCG5U0jm6i0WxGh5vg0Kp25-kMw5fz72fkuJJ1g-eH2SPzu9v5aBJNH8f3o-E0UjyPQ6SVTqGstOQp6Byl5AJLyUqEUic8ixUXUiWMIWBV6YGQbTvByhQykSjM4x652p9de_exwSYUS7fxtk0s-IDDrnzOWxXsVcq7pvFYFWtvVtJvC2DFDl-xw1fs8BUHfK0n_eNRJshgnG1Bmfpf5-XeaRDxN6l9OwaWxj_yPX-H |
| CODEN | IGRSD2 |
| CitedBy_id | crossref_primary_10_1109_TGRS_2022_3141387 crossref_primary_10_1109_TGRS_2023_3307346 crossref_primary_10_1109_LGRS_2023_3297577 crossref_primary_10_1109_TGRS_2022_3187867 crossref_primary_10_1109_TGRS_2024_3375598 crossref_primary_10_1109_JSTARS_2025_3569856 crossref_primary_10_1109_TGRS_2024_3394435 crossref_primary_10_1109_TGRS_2023_3308211 crossref_primary_10_1109_TGRS_2021_3136336 crossref_primary_10_1109_JSTARS_2022_3188565 crossref_primary_10_1109_TGRS_2024_3422495 crossref_primary_10_1109_TCI_2023_3321985 crossref_primary_10_1109_TGRS_2024_3454818 crossref_primary_10_1109_TGRS_2025_3577325 crossref_primary_10_1109_JSTARS_2025_3542228 crossref_primary_10_1109_TGRS_2022_3202490 crossref_primary_10_1109_TGRS_2024_3381632 crossref_primary_10_1109_JSTARS_2024_3387750 crossref_primary_10_1109_TGRS_2024_3360714 crossref_primary_10_1109_TGRS_2024_3363427 crossref_primary_10_1080_01431161_2024_2408038 crossref_primary_10_1109_TGRS_2022_3223434 crossref_primary_10_1109_TGRS_2024_3393570 crossref_primary_10_1109_JSEN_2022_3143852 crossref_primary_10_1109_LGRS_2023_3308206 crossref_primary_10_1109_TGRS_2022_3168712 crossref_primary_10_1109_TGRS_2025_3544037 crossref_primary_10_1109_JSTARS_2023_3323748 crossref_primary_10_1109_JSTARS_2021_3140154 crossref_primary_10_1109_JSTARS_2024_3450856 crossref_primary_10_1109_TGRS_2023_3321839 crossref_primary_10_1109_TGRS_2024_3377472 crossref_primary_10_1109_JSTARS_2023_3308037 crossref_primary_10_1109_JSTARS_2024_3465227 crossref_primary_10_1109_TGRS_2025_3530642 crossref_primary_10_1109_TIP_2023_3266660 crossref_primary_10_1109_JSTARS_2023_3335907 crossref_primary_10_1109_TGRS_2024_3452323 |
| Cites_doi | 10.1109/ACCESS.2018.2818280 10.1109/TGRS.2019.2893489 10.1109/TCI.2016.2631979 10.1109/TGRS.2008.918089 10.1109/TGRS.2013.2264392 10.1109/TIP.2016.2627815 10.1109/TGRS.2016.2636241 10.1109/MSP.2013.2279274 10.1109/TGRS.2011.2160950 10.1109/TGRS.2019.2961947 10.1109/LGRS.2019.2900733 10.1109/LGRS.2018.2857804 10.1109/TIP.2019.2893068 10.1109/TCI.2019.2948726 10.1109/TGRS.2018.2868690 10.1109/TSP.2012.2222390 10.1109/TGRS.2015.2453915 10.1109/JSTARS.2015.2388577 10.1016/0034-4257(94)90107-4 10.1109/TIP.2018.2878958 10.1109/JSTARS.2014.2320576 10.1109/TGRS.2018.2890633 10.1080/01431160802558659 10.1109/TGRS.2018.2856929 10.1109/IGARSS.2017.8126931 10.1109/79.974727 10.1109/IGARSS.2011.6049492 10.1109/TGRS.2020.2992743 10.1109/JSTARS.2019.2905099 10.1029/jb086ib04p03039 10.1109/TIP.2015.2468177 10.1109/WHISPERS.2015.8075378 10.1109/JSTARS.2014.2329330 10.1117/12.366289 10.1117/12.919583 10.1109/TIP.2012.2187668 10.1109/IGARSS.2017.8126930 10.1109/JSTARS.2012.2194696 10.1109/JSTARS.2020.2966512 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| DOI | 10.1109/TGRS.2021.3098745 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1558-0644 |
| EndPage | 15 |
| ExternalDocumentID | 10_1109_TGRS_2021_3098745 9503107 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Key Research and Development Program of China grantid: 2018AAA0102200 funderid: 10.13039/501100012166 – fundername: Higher Education Discipline Innovation Project; 111 Project grantid: B18041 funderid: 10.13039/501100013314 – fundername: Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University funderid: 10.13039/501100002663 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 Y6R AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| ID | FETCH-LOGICAL-c293t-dcd71bfda271d9eaa25eba0be1bd4283c25ac400e1effd65a30950b71854ce93 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 63 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000732789500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0196-2892 |
| IngestDate | Mon Jun 30 08:32:38 EDT 2025 Tue Nov 18 21:34:59 EST 2025 Sat Nov 29 02:50:14 EST 2025 Wed Aug 27 03:02:34 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-dcd71bfda271d9eaa25eba0be1bd4283c25ac400e1effd65a30950b71854ce93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2306-8860 0000-0002-6476-2501 0000-0003-0831-6934 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/9503107 |
| PQID | 2621064492 |
| PQPubID | 85465 |
| PageCount | 15 |
| ParticipantIDs | crossref_primary_10_1109_TGRS_2021_3098745 crossref_citationtrail_10_1109_TGRS_2021_3098745 proquest_journals_2621064492 ieee_primary_9503107 |
| PublicationCentury | 2000 |
| PublicationDate | 20220000 2022-00-00 20220101 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – year: 2022 text: 20220000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on geoscience and remote sensing |
| PublicationTitleAbbrev | TGRS |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref41 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Goodfellow (ref36) 2016 ref40 Zhao (ref1) 2019 |
| References_xml | – ident: ref25 doi: 10.1109/ACCESS.2018.2818280 – ident: ref17 doi: 10.1109/TGRS.2019.2893489 – ident: ref38 doi: 10.1109/TCI.2016.2631979 – ident: ref35 doi: 10.1109/TGRS.2008.918089 – ident: ref14 doi: 10.1109/TGRS.2013.2264392 – ident: ref15 doi: 10.1109/TIP.2016.2627815 – ident: ref19 doi: 10.1109/TGRS.2016.2636241 – ident: ref40 doi: 10.1109/MSP.2013.2279274 – ident: ref22 doi: 10.1109/TGRS.2011.2160950 – ident: ref21 doi: 10.1109/TGRS.2019.2961947 – ident: ref34 doi: 10.1109/LGRS.2019.2900733 – ident: ref23 doi: 10.1109/LGRS.2018.2857804 – ident: ref4 doi: 10.1109/TIP.2019.2893068 – ident: ref31 doi: 10.1109/TCI.2019.2948726 – ident: ref27 doi: 10.1109/TGRS.2018.2868690 – ident: ref13 doi: 10.1109/TSP.2012.2222390 – ident: ref16 doi: 10.1109/TGRS.2015.2453915 – ident: ref20 doi: 10.1109/JSTARS.2015.2388577 – ident: ref7 doi: 10.1016/0034-4257(94)90107-4 – ident: ref5 doi: 10.1109/TIP.2018.2878958 – ident: ref6 doi: 10.1109/JSTARS.2014.2320576 – ident: ref29 doi: 10.1109/TGRS.2018.2890633 – ident: ref8 doi: 10.1080/01431160802558659 – ident: ref30 doi: 10.1109/TGRS.2018.2856929 – volume-title: Deep Learning year: 2016 ident: ref36 – year: 2019 ident: ref1 article-title: Hyperspectral unmixing via deep autoencoder networks for a generalized linear-mixture/nonlinear-fluctuation model publication-title: arXiv:1904.13017 – ident: ref26 doi: 10.1109/IGARSS.2017.8126931 – ident: ref3 doi: 10.1109/79.974727 – ident: ref9 doi: 10.1109/IGARSS.2011.6049492 – ident: ref32 doi: 10.1109/TGRS.2020.2992743 – ident: ref41 doi: 10.1109/JSTARS.2019.2905099 – ident: ref11 doi: 10.1029/jb086ib04p03039 – ident: ref39 doi: 10.1109/TIP.2015.2468177 – ident: ref24 doi: 10.1109/WHISPERS.2015.8075378 – ident: ref18 doi: 10.1109/JSTARS.2014.2329330 – ident: ref37 doi: 10.1117/12.366289 – ident: ref12 doi: 10.1117/12.919583 – ident: ref10 doi: 10.1109/TIP.2012.2187668 – ident: ref28 doi: 10.1109/IGARSS.2017.8126930 – ident: ref2 doi: 10.1109/JSTARS.2012.2194696 – ident: ref33 doi: 10.1109/JSTARS.2020.2966512 |
| SSID | ssj0014517 |
| Score | 2.61584 |
| Snippet | Spectral unmixing is an important task in hyperspectral image processing for separating the mixed spectral data pertaining to various materials observed aiming... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | 3-D-convolutional neural network (CNN) Additives Artificial neural networks autoencoder network Decoding Hyperspectral imaging Image processing Kernel Mixture models Neural networks nonlinear spectral unmixing Nonlinear systems Nonlinearity Photonics Spectra |
| Title | Hyperspectral Unmixing for Additive Nonlinear Models With a 3-D-CNN Autoencoder Network |
| URI | https://ieeexplore.ieee.org/document/9503107 https://www.proquest.com/docview/2621064492 |
| Volume | 60 |
| WOSCitedRecordID | wos000732789500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0644 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014517 issn: 0196-2892 databaseCode: RIE dateStart: 19800101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8NAFH6oKOjBpVWsG3PwJE6bTJbpHItaPUgQrdpbmBUL2kqaij_fmUksiiJ4y-E9CPNl8vbvARy7VKPQIcdc8QjHKhJYUGOwiLqGx8YQ4nkKHq5plnWHQ3azAKfzWRittW8-02336Gv5aiJnLlXWYYkjsqSLsEhpWs1qzSsGcRLWo9EptkEEqSuYYcA6g8vbOxsJkrAdBczRu3-zQX6pyo8_sTcv_Y3_vdgmrNduJOpVuG_Bgh43YO0LuWADVnxzp5w24fHKBpvVTGVhle7HL6N3K4Ksv4p6SvnuIZRVnBm8QG492vMUPY7KJ8RRhM_xWZah3qycONJLpQuUVb3j2zDoXwzOrnC9UAFLa9VLrKSioTCKExoqpjkniRY8sFgJ5YjXJEm4tJdah9oYlSbcnlcSCGu-klhqFu3A0ngy1ruAOO8SI2JJYtONtY1EFTUsUlQIqQ0P4hYEnyecy5ps3O28eM590BGw3IGSO1DyGpQWnMxVXiumjb-Emw6FuWANQAsOPmHM67s4zUlqw1rr9jGy97vWPqwSN9TgEysHsFQWM30Iy_KtHE2LI_-ZfQDLU9C6 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8NAFH64oh7cxbrOwZM4mkwmTedY3CrWIFqXW5gVC9pKmoo_35lJLIoieMvhPQjzZfL27wHsuVSj0CHHXPEIUxUJLBJjsIgahlNjCPE8BfftJE0bj4_segwORrMwWmvffKYP3aOv5au-HLpU2RGLHZFlMg6TMaUkKKe1RjUDGofVcHQd2zCCVDXMMGBHnfObWxsLkvAwCpgjeP9mhfxalR__Ym9gzhb-92qLMF85kqhZIr8EY7q3DHNf6AWXYdq3d8rBCjy0bLhZTlXmVumu99J9tyLIeqyoqZTvH0JpyZrBc-QWpD0P0EO3eEIcRfgEH6cpag6LvqO9VDpHadk9vgqds9POcQtXKxWwtHa9wEqqJBRGcZKEimnOSawFDyxaQjnqNUliLu211qE2RtVjbs8rDoQ1YDGVmkVrMNHr9_Q6IM4bxAgqCTUNqm0sqhLDIpUIIbXhAa1B8HnCmazoxt3Wi-fMhx0ByxwomQMlq0Cpwf5I5bXk2vhLeMWhMBKsAKjB1ieMWXUbBxmp28DWOn6MbPyutQszrc5VO2tfpJebMEvciINPs2zBRJEP9TZMybeiO8h3_Cf3Ac_t1AE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hyperspectral+Unmixing+for+Additive+Nonlinear+Models+With+a+3-D-CNN+Autoencoder+Network&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Zhao%2C+Min&rft.au=Wang%2C+Mou&rft.au=Chen%2C+Jie&rft.au=Rahardja%2C+Susanto&rft.date=2022&rft.pub=IEEE&rft.issn=0196-2892&rft.volume=60&rft.spage=1&rft.epage=15&rft_id=info:doi/10.1109%2FTGRS.2021.3098745&rft.externalDocID=9503107 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |