Profit-Maximized Collaborative Computation Offloading and Resource Allocation in Distributed Cloud and Edge Computing Systems

Edge computing is a new architecture to provide computing, storage, and networking resources for achieving the Internet of Things. It brings computation to the network edge in close proximity to users. However, nodes in the edge have limited energy and resources. Completely running tasks in the edge...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on automation science and engineering Ročník 18; číslo 3; s. 1277 - 1287
Hlavní autoři: Yuan, Haitao, Zhou, MengChu
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.07.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1545-5955, 1558-3783
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Edge computing is a new architecture to provide computing, storage, and networking resources for achieving the Internet of Things. It brings computation to the network edge in close proximity to users. However, nodes in the edge have limited energy and resources. Completely running tasks in the edge may cause poor performance. Cloud data centers (CDCs) have rich resources for executing tasks, but they are located in places far away from users. CDCs lead to long transmission delays and large financial costs for utilizing resources. Therefore, it is essential to smartly offload users' tasks between a CDC layer and an edge computing layer. This work proposes a cloud and edge computing system, which has a terminal layer, edge computing layer, and CDC layer. Based on it, this work designs a profit-maximized collaborative computation offloading and resource allocation algorithm to maximize the profit of systems and guarantee that response time limits of tasks are strictly met. In each time slot, this work jointly considers CPU, memory, and bandwidth resources, load balance of all heterogeneous nodes in the edge layer, maximum amount of energy, maximum number of servers, and task queue stability in the CDC layer. Considering the abovementioned factors, a single-objective constrained optimization problem is formulated and solved by a proposed simulated-annealing-based migrating birds optimization procedure to obtain a close-to-optimal solution. The proposed method achieves joint optimization of computation offloading between CDC and edge, and resource allocation in CDC. Realistic data-based simulation results demonstrate that it realizes higher profit than its peers. Note to Practitioners -This work considers the joint optimization of computation offloading between Cloud data center (CDC) and edge computing layers, and resource allocation in CDC. It is important to maximize the profit of distributed cloud and edge computing systems by optimally scheduling all tasks between them given user-specific response time limits of tasks. It is challenging to execute them in nodes in the edge computing layer because their computation resources and battery capacities are often constrained and heterogeneous. Current offloading methods fail to jointly optimize computation offloading and resource allocation for nodes in the edge and servers in CDC. They are insufficient and coarse-grained to schedule arriving tasks. In this work, a novel algorithm is proposed to maximize the profit of distributed cloud and edge computing systems while meeting response time limits of tasks. It explicitly specifies the task service rate and the selected node for each task in each time slot by considering resource limits, load balance requirement, and processing capacities of nodes in the edge, and server and energy constraints in CDC. Real-life data-driven simulations show that the proposed method realizes a larger profit than several typical offloading strategies. It can be readily implemented and incorporated into large-scale industrial computing systems.
AbstractList Edge computing is a new architecture to provide computing, storage, and networking resources for achieving the Internet of Things. It brings computation to the network edge in close proximity to users. However, nodes in the edge have limited energy and resources. Completely running tasks in the edge may cause poor performance. Cloud data centers (CDCs) have rich resources for executing tasks, but they are located in places far away from users. CDCs lead to long transmission delays and large financial costs for utilizing resources. Therefore, it is essential to smartly offload users’ tasks between a CDC layer and an edge computing layer. This work proposes a cloud and edge computing system, which has a terminal layer, edge computing layer, and CDC layer. Based on it, this work designs a profit-maximized collaborative computation offloading and resource allocation algorithm to maximize the profit of systems and guarantee that response time limits of tasks are strictly met. In each time slot, this work jointly considers CPU, memory, and bandwidth resources, load balance of all heterogeneous nodes in the edge layer, maximum amount of energy, maximum number of servers, and task queue stability in the CDC layer. Considering the abovementioned factors, a single-objective constrained optimization problem is formulated and solved by a proposed simulated-annealing-based migrating birds optimization procedure to obtain a close-to-optimal solution. The proposed method achieves joint optimization of computation offloading between CDC and edge, and resource allocation in CDC. Realistic data-based simulation results demonstrate that it realizes higher profit than its peers. Note to Practitioners —This work considers the joint optimization of computation offloading between Cloud data center (CDC) and edge computing layers, and resource allocation in CDC. It is important to maximize the profit of distributed cloud and edge computing systems by optimally scheduling all tasks between them given user-specific response time limits of tasks. It is challenging to execute them in nodes in the edge computing layer because their computation resources and battery capacities are often constrained and heterogeneous. Current offloading methods fail to jointly optimize computation offloading and resource allocation for nodes in the edge and servers in CDC. They are insufficient and coarse-grained to schedule arriving tasks. In this work, a novel algorithm is proposed to maximize the profit of distributed cloud and edge computing systems while meeting response time limits of tasks. It explicitly specifies the task service rate and the selected node for each task in each time slot by considering resource limits, load balance requirement, and processing capacities of nodes in the edge, and server and energy constraints in CDC. Real-life data-driven simulations show that the proposed method realizes a larger profit than several typical offloading strategies. It can be readily implemented and incorporated into large-scale industrial computing systems.
Author Zhou, MengChu
Yuan, Haitao
Author_xml – sequence: 1
  givenname: Haitao
  orcidid: 0000-0001-8475-419X
  surname: Yuan
  fullname: Yuan, Haitao
  email: haitao.yuan@njit.edu
  organization: Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ, USA
– sequence: 2
  givenname: MengChu
  orcidid: 0000-0002-5408-8752
  surname: Zhou
  fullname: Zhou, MengChu
  email: zhou@njit.edu
  organization: Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ, USA
BookMark eNp9kF1LwzAUhoNMcJv-APGm4HVnPpv2csz5ARPFzeuSNsnI6JqZpOIE_7utnV544VVO4H3ec3hGYFDbWgFwjuAEIZhdrabL-QRDDCcEQpjR5AgMEWNpTHhKBt1MWcwyxk7AyPsNhJimGRyCzydntQnxg3g3W_OhZDSzVSUK60Qwb6r9bXdNaGdbR49aV1ZIU68jUcvoWXnbuFJF06qyZR8xdXRtfHCmaELXVdlGfofncv1T1vHLvQ9q60_BsRaVV2eHdwxebuar2V28eLy9n00XcYkzEmJZcEIYKyHDWCaccFjolGZYcSmQkEylrMCl4kxrkciUEV4ITjEpscBMQE7G4LLv3Tn72igf8k17et2uzDGjPKGcJaRNoT5VOuu9UzrfObMVbp8jmHeW885y3lnOD5Zbhv9hStPrCk6Y6l_yoieNUup3U4YoJIiTL5VVjfQ
CODEN ITASC7
CitedBy_id crossref_primary_10_1109_TSC_2025_3552338
crossref_primary_10_1016_j_future_2024_04_055
crossref_primary_10_1109_JIOT_2021_3100117
crossref_primary_10_1007_s11227_023_05059_9
crossref_primary_10_1007_s11770_024_1039_1
crossref_primary_10_1109_TNSM_2023_3267809
crossref_primary_10_3390_fi14020030
crossref_primary_10_1109_TPDS_2024_3486184
crossref_primary_10_1007_s00170_023_11252_0
crossref_primary_10_1155_2021_9529022
crossref_primary_10_4018_IJGHPC_316837
crossref_primary_10_1109_TETCI_2023_3339540
crossref_primary_10_1007_s12652_023_04587_9
crossref_primary_10_1109_ACCESS_2022_3206359
crossref_primary_10_1109_TASE_2022_3228250
crossref_primary_10_3390_s22010011
crossref_primary_10_1016_j_jii_2025_100776
crossref_primary_10_1109_TSMC_2020_3042898
crossref_primary_10_1109_TVT_2023_3237369
crossref_primary_10_1109_TGCN_2023_3306002
crossref_primary_10_1007_s10723_024_09790_2
crossref_primary_10_1109_JIOT_2024_3524868
crossref_primary_10_1109_JIOT_2023_3234966
crossref_primary_10_1109_TASE_2020_3046673
crossref_primary_10_1016_j_istruc_2025_109954
crossref_primary_10_1109_TCE_2025_3546948
crossref_primary_10_1016_j_sysarc_2025_103447
crossref_primary_10_1007_s00607_025_01500_4
crossref_primary_10_3390_sym15050985
crossref_primary_10_1109_TASE_2020_3048056
crossref_primary_10_1016_j_future_2024_01_015
crossref_primary_10_1016_j_ins_2024_120530
crossref_primary_10_1109_TASE_2022_3176745
crossref_primary_10_1016_j_ins_2025_122138
crossref_primary_10_1109_TCC_2022_3194713
crossref_primary_10_1016_j_phycom_2023_102065
crossref_primary_10_1109_TNSE_2021_3123280
crossref_primary_10_1109_JIOT_2021_3121796
crossref_primary_10_1109_ACCESS_2023_3322650
crossref_primary_10_1016_j_compind_2024_104131
crossref_primary_10_1109_TITS_2022_3177404
crossref_primary_10_1109_JAS_2020_1003515
crossref_primary_10_1109_TVT_2022_3143828
crossref_primary_10_1007_s11227_023_05387_w
crossref_primary_10_1109_JIOT_2022_3233830
crossref_primary_10_1016_j_sysarc_2025_103469
crossref_primary_10_1016_j_procir_2024_07_006
crossref_primary_10_25139_ijair_v6i2_8597
crossref_primary_10_1016_j_comnet_2025_111482
crossref_primary_10_1109_TASE_2023_3316287
crossref_primary_10_3390_s25164913
crossref_primary_10_1109_JAS_2022_105695
crossref_primary_10_1109_JIOT_2024_3508693
crossref_primary_10_1007_s10462_022_10230_4
crossref_primary_10_1109_TNNLS_2021_3105901
crossref_primary_10_1016_j_engappai_2025_111108
crossref_primary_10_1109_JIOT_2024_3395276
crossref_primary_10_1109_TASE_2023_3292908
crossref_primary_10_1109_TII_2021_3114300
crossref_primary_10_1007_s10586_023_04017_7
crossref_primary_10_1016_j_eswa_2024_123896
crossref_primary_10_3390_pr11082447
crossref_primary_10_1002_cpe_70091
crossref_primary_10_1109_TNSM_2023_3266238
crossref_primary_10_1109_JIOT_2024_3486619
crossref_primary_10_1109_JIOT_2025_3527704
crossref_primary_10_1109_TASE_2023_3289908
crossref_primary_10_1186_s13677_023_00452_4
crossref_primary_10_1109_JIOT_2022_3233026
crossref_primary_10_1109_JIOT_2025_3542428
crossref_primary_10_1109_TNSM_2022_3213761
crossref_primary_10_1109_TSMC_2022_3219380
crossref_primary_10_1109_ACCESS_2024_3385230
crossref_primary_10_1109_ACCESS_2020_3035181
crossref_primary_10_1109_ACCESS_2022_3175850
crossref_primary_10_1109_TMC_2022_3220720
crossref_primary_10_1109_JIOT_2022_3183006
crossref_primary_10_1016_j_engappai_2024_108477
crossref_primary_10_1109_TMC_2021_3096860
crossref_primary_10_1109_TVT_2023_3250486
crossref_primary_10_1007_s11227_025_07295_7
crossref_primary_10_1109_JAS_2022_105425
crossref_primary_10_1109_TASE_2025_3529719
crossref_primary_10_1007_s11036_022_02029_y
crossref_primary_10_1007_s11276_024_03886_z
crossref_primary_10_1109_JIOT_2025_3525815
crossref_primary_10_1016_j_jpdc_2024_104850
crossref_primary_10_1109_TNSM_2021_3101862
crossref_primary_10_1007_s11276_023_03268_x
crossref_primary_10_1109_TCOMM_2022_3221403
crossref_primary_10_1109_TASE_2022_3183633
crossref_primary_10_1109_JIOT_2023_3262849
crossref_primary_10_1007_s10462_022_10296_0
crossref_primary_10_1007_s10586_024_04815_7
crossref_primary_10_1109_JIOT_2024_3395331
crossref_primary_10_1007_s10586_025_05197_0
crossref_primary_10_1002_cpe_8139
crossref_primary_10_1016_j_comnet_2024_110618
crossref_primary_10_1109_TR_2023_3335969
crossref_primary_10_1109_JIOT_2023_3293497
crossref_primary_10_1109_TCC_2025_3548043
crossref_primary_10_47164_ijngc_v13i1_412
crossref_primary_10_1109_TCCN_2024_3392809
crossref_primary_10_1109_TSC_2025_3589122
crossref_primary_10_1007_s42486_024_00156_x
crossref_primary_10_1109_MRA_2023_3266618
crossref_primary_10_1109_JIOT_2020_3022534
crossref_primary_10_1002_cpe_7682
crossref_primary_10_1002_cpe_70078
crossref_primary_10_1109_TASE_2023_3330148
crossref_primary_10_7717_peerj_cs_851
crossref_primary_10_1109_ACCESS_2024_3384562
crossref_primary_10_1109_JIOT_2021_3097764
crossref_primary_10_1016_j_comnet_2024_110468
crossref_primary_10_1051_epjconf_202532605007
crossref_primary_10_1016_j_comnet_2022_109383
crossref_primary_10_1109_TSC_2022_3177316
crossref_primary_10_1007_s40010_023_00809_z
crossref_primary_10_1109_TNSM_2023_3348124
crossref_primary_10_1109_JIOT_2025_3557431
crossref_primary_10_1109_TVT_2021_3121096
crossref_primary_10_1109_JSEN_2023_3304301
crossref_primary_10_1109_TITS_2023_3271788
crossref_primary_10_1109_ACCESS_2020_3029649
crossref_primary_10_1016_j_compeleceng_2022_108510
crossref_primary_10_1016_j_vehcom_2023_100654
crossref_primary_10_1109_JAS_2022_106100
crossref_primary_10_1109_JIOT_2021_3127203
crossref_primary_10_1016_j_phycom_2025_102848
crossref_primary_10_3390_electronics13173383
crossref_primary_10_1007_s10878_022_00894_7
crossref_primary_10_1109_TVT_2021_3133586
crossref_primary_10_3389_fbioe_2022_908056
crossref_primary_10_1109_TASE_2025_3557934
Cites_doi 10.1109/TASE.2017.2785241
10.1016/j.asoc.2017.07.023
10.1109/TVT.2019.2904244
10.1109/JIOT.2018.2875909
10.1109/TCOMM.2016.2599530
10.1109/TASE.2015.2427234
10.1016/j.neucom.2015.12.061
10.1109/JIOT.2018.2882783
10.1109/JIOT.2018.2876279
10.1109/TASE.2016.2526781
10.1109/TPDS.2019.2893925
10.1109/JAS.2017.7510436
10.1109/LWC.2017.2740927
10.1109/TPDS.2014.2353051
10.1109/TMC.2018.2865312
10.1109/TVT.2014.2372852
10.1109/TASE.2015.2503325
10.1016/j.future.2015.03.009
10.1109/TASE.2018.2858290
10.1109/LWC.2017.2780128
10.1109/TCYB.2016.2574766
10.1109/TASE.2017.2784826
10.1109/TSG.2016.2562565
10.1109/JSYST.2013.2289556
10.1109/TASE.2018.2826723
10.1109/TPDS.2012.203
10.1109/JIOT.2017.2780236
10.1016/j.ins.2012.06.032
10.1109/TVT.2019.2917890
10.1109/JSTSP.2016.2637164
10.1109/TVT.2019.2905432
10.1109/TCYB.2015.2475174
10.1109/JIOT.2018.2875520
10.1109/TMC.2018.2847337
10.1109/LCOMM.2019.2897630
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TASE.2020.3000946
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-3783
EndPage 1287
ExternalDocumentID 10_1109_TASE_2020_3000946
9140317
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-db73355c0522d67370bf8492e7da1ad5e85b2ce75ffa6d8537ba7423c2a25a073
IEDL.DBID RIE
ISICitedReferencesCount 157
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000670593000032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1545-5955
IngestDate Sun Nov 30 03:52:06 EST 2025
Tue Nov 18 19:41:25 EST 2025
Sat Nov 29 04:12:47 EST 2025
Wed Aug 27 02:26:47 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-db73355c0522d67370bf8492e7da1ad5e85b2ce75ffa6d8537ba7423c2a25a073
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8475-419X
0000-0002-5408-8752
PQID 2547647563
PQPubID 27623
PageCount 11
ParticipantIDs crossref_primary_10_1109_TASE_2020_3000946
proquest_journals_2547647563
crossref_citationtrail_10_1109_TASE_2020_3000946
ieee_primary_9140317
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on automation science and engineering
PublicationTitleAbbrev TASE
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref15
ref14
ref31
ref30
ref33
ref11
ref32
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref8
  doi: 10.1109/TASE.2017.2785241
– ident: ref31
  doi: 10.1016/j.asoc.2017.07.023
– ident: ref15
  doi: 10.1109/TVT.2019.2904244
– ident: ref19
  doi: 10.1109/JIOT.2018.2875909
– ident: ref25
  doi: 10.1109/TCOMM.2016.2599530
– ident: ref32
  doi: 10.1109/TASE.2015.2427234
– ident: ref35
  doi: 10.1016/j.neucom.2015.12.061
– ident: ref11
  doi: 10.1109/JIOT.2018.2882783
– ident: ref16
  doi: 10.1109/JIOT.2018.2876279
– ident: ref3
  doi: 10.1109/TASE.2016.2526781
– ident: ref28
  doi: 10.1109/TPDS.2019.2893925
– ident: ref33
  doi: 10.1109/JAS.2017.7510436
– ident: ref13
  doi: 10.1109/LWC.2017.2740927
– ident: ref22
  doi: 10.1109/TPDS.2014.2353051
– ident: ref18
  doi: 10.1109/TMC.2018.2865312
– ident: ref24
  doi: 10.1109/TVT.2014.2372852
– ident: ref2
  doi: 10.1109/TASE.2015.2503325
– ident: ref26
  doi: 10.1016/j.future.2015.03.009
– ident: ref29
  doi: 10.1109/TASE.2018.2858290
– ident: ref10
  doi: 10.1109/LWC.2017.2780128
– ident: ref5
  doi: 10.1109/TCYB.2016.2574766
– ident: ref1
  doi: 10.1109/TASE.2017.2784826
– ident: ref27
  doi: 10.1109/TSG.2016.2562565
– ident: ref6
  doi: 10.1109/JSYST.2013.2289556
– ident: ref7
  doi: 10.1109/TASE.2018.2826723
– ident: ref21
  doi: 10.1109/TPDS.2012.203
– ident: ref4
  doi: 10.1109/JIOT.2017.2780236
– ident: ref30
  doi: 10.1016/j.ins.2012.06.032
– ident: ref9
  doi: 10.1109/TVT.2019.2917890
– ident: ref23
  doi: 10.1109/JSTSP.2016.2637164
– ident: ref20
  doi: 10.1109/TVT.2019.2905432
– ident: ref34
  doi: 10.1109/TCYB.2015.2475174
– ident: ref14
  doi: 10.1109/JIOT.2018.2875520
– ident: ref12
  doi: 10.1109/TMC.2018.2847337
– ident: ref17
  doi: 10.1109/LCOMM.2019.2897630
SSID ssj0024890
Score 2.614634
Snippet Edge computing is a new architecture to provide computing, storage, and networking resources for achieving the Internet of Things. It brings computation to the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1277
SubjectTerms Algorithms
Cloud computing
Cloud data centers (CDCs)
Collaboration
Computation offloading
Constraint modelling
Data centers
Edge computing
intelligent optimization
Internet of Things
Load balancing
migrating birds optimization (MBO)
Nodes
Optimization
Resource allocation
Resource management
Response time
Response time (computers)
Schedules
Servers
Simulated annealing
simulated annealing (SA)
Simulation
Task scheduling
Title Profit-Maximized Collaborative Computation Offloading and Resource Allocation in Distributed Cloud and Edge Computing Systems
URI https://ieeexplore.ieee.org/document/9140317
https://www.proquest.com/docview/2547647563
Volume 18
WOSCitedRecordID wos000670593000032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-3783
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024890
  issn: 1545-5955
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5UPOjBt7i6Sg6exGqaNk1zXNYVD77AB95KmocsrF3RXRHB_24m210VRfDWw0wo_dLMTDL5PoDd0mcVUsdZZDWlvkDRPMpNwqJMpy7hlCkaNJZuT8X5eX53Jy-nYH9yF8ZaG5rP7AE-hrN809dD3Co7lEguF4tpmBYiG93V-uTVy8N-CmYEEZec1yeYMZWH162rjq8EmS9QQydd9i0GBVGVHytxCC_Hi_97sSVYqNNI0hrhvgxTtlqB-S_kgqvwfoly3IPoTL12H7pv1pD2J-Yvloz0HAIw5MK5Xj900xNVGTLe0yetHsa6YNKtyBGS7KI-Fo7V6w9NMO6Y-_Fg6F9ToK_BzXHnun0S1WILkfYRfxCZUiQ-99DUJ2QGxWto6fJUMiuMipXhNucl01Zw51RmfJAXpcJTXs0U48ovFOswU_UruwHE8cSV3o3GWqRaKql57CQrbSqFs7luAB1__kLXTOQoiNErQkVCZYGIFYhYUSPWgL2Jy-OIhuMv41WEaGJYo9OA5hjjov5RnwtfH4ssFTxLNn_32oI5hm0soUO3CTODp6Hdhln9Mug-P-2EOfgBDhrapw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT-MwEB2xgLRwAHYBUb7Whz2hzeI4cRwfKygCbSlIFMQtcvyBKpUUQYvQSvvf8bhpAYFW4pbDjBXlOZ4Ze_wewM_SZxVSx1lkNaW-QNE8yk3CokynLuGUKRo0lq7aotPJr6_l-Qz8mt6FsdaG5jP7Gx_DWb4Z6BFule1LJJeLxReY42nK6Pi21guzXh52VDAniLjkvD7DjKnc7zYvWr4WZL5EDb102ZsoFGRV3q3FIcAcLX_u1VZgqU4kSXOM_DeYsdV3WHxFL7gK_85RkHsYnaqn3m3vrzXk4AX1R0vGig4BGnLmXH8Q-umJqgyZ7OqTZh-jXTDpVeQQaXZRIQvH6g9GJhi3zM1kMPSvSdDX4PKo1T04jmq5hUj7mD-MTCkSn31o6lMyg_I1tHR5KpkVRsXKcJvzkmkruHMqMz7Mi1LhOa9minHll4p1mK0Gld0A4njiSu9GYy1SLZXUPHaSlTaVwtlcN4BOPn-hay5ylMToF6EmobJAxApErKgRa8De1OVuTMTxP-NVhGhqWKPTgO0JxkX9qz4UvkIWWSp4lmx-7PUDvh53T9tF-6TzZwsWGDa1hH7dbZgd3o_sDszrx2Hv4X43zMdnkXXd7g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Profit-Maximized+Collaborative+Computation+Offloading+and+Resource+Allocation+in+Distributed+Cloud+and+Edge+Computing+Systems&rft.jtitle=IEEE+transactions+on+automation+science+and+engineering&rft.au=Yuan%2C+Haitao&rft.au=Zhou%2C+MengChu&rft.date=2021-07-01&rft.issn=1545-5955&rft.eissn=1558-3783&rft.volume=18&rft.issue=3&rft.spage=1277&rft.epage=1287&rft_id=info:doi/10.1109%2FTASE.2020.3000946&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TASE_2020_3000946
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5955&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5955&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5955&client=summon