Profit-Maximized Collaborative Computation Offloading and Resource Allocation in Distributed Cloud and Edge Computing Systems
Edge computing is a new architecture to provide computing, storage, and networking resources for achieving the Internet of Things. It brings computation to the network edge in close proximity to users. However, nodes in the edge have limited energy and resources. Completely running tasks in the edge...
Uloženo v:
| Vydáno v: | IEEE transactions on automation science and engineering Ročník 18; číslo 3; s. 1277 - 1287 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.07.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1545-5955, 1558-3783 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Edge computing is a new architecture to provide computing, storage, and networking resources for achieving the Internet of Things. It brings computation to the network edge in close proximity to users. However, nodes in the edge have limited energy and resources. Completely running tasks in the edge may cause poor performance. Cloud data centers (CDCs) have rich resources for executing tasks, but they are located in places far away from users. CDCs lead to long transmission delays and large financial costs for utilizing resources. Therefore, it is essential to smartly offload users' tasks between a CDC layer and an edge computing layer. This work proposes a cloud and edge computing system, which has a terminal layer, edge computing layer, and CDC layer. Based on it, this work designs a profit-maximized collaborative computation offloading and resource allocation algorithm to maximize the profit of systems and guarantee that response time limits of tasks are strictly met. In each time slot, this work jointly considers CPU, memory, and bandwidth resources, load balance of all heterogeneous nodes in the edge layer, maximum amount of energy, maximum number of servers, and task queue stability in the CDC layer. Considering the abovementioned factors, a single-objective constrained optimization problem is formulated and solved by a proposed simulated-annealing-based migrating birds optimization procedure to obtain a close-to-optimal solution. The proposed method achieves joint optimization of computation offloading between CDC and edge, and resource allocation in CDC. Realistic data-based simulation results demonstrate that it realizes higher profit than its peers. Note to Practitioners -This work considers the joint optimization of computation offloading between Cloud data center (CDC) and edge computing layers, and resource allocation in CDC. It is important to maximize the profit of distributed cloud and edge computing systems by optimally scheduling all tasks between them given user-specific response time limits of tasks. It is challenging to execute them in nodes in the edge computing layer because their computation resources and battery capacities are often constrained and heterogeneous. Current offloading methods fail to jointly optimize computation offloading and resource allocation for nodes in the edge and servers in CDC. They are insufficient and coarse-grained to schedule arriving tasks. In this work, a novel algorithm is proposed to maximize the profit of distributed cloud and edge computing systems while meeting response time limits of tasks. It explicitly specifies the task service rate and the selected node for each task in each time slot by considering resource limits, load balance requirement, and processing capacities of nodes in the edge, and server and energy constraints in CDC. Real-life data-driven simulations show that the proposed method realizes a larger profit than several typical offloading strategies. It can be readily implemented and incorporated into large-scale industrial computing systems. |
|---|---|
| AbstractList | Edge computing is a new architecture to provide computing, storage, and networking resources for achieving the Internet of Things. It brings computation to the network edge in close proximity to users. However, nodes in the edge have limited energy and resources. Completely running tasks in the edge may cause poor performance. Cloud data centers (CDCs) have rich resources for executing tasks, but they are located in places far away from users. CDCs lead to long transmission delays and large financial costs for utilizing resources. Therefore, it is essential to smartly offload users’ tasks between a CDC layer and an edge computing layer. This work proposes a cloud and edge computing system, which has a terminal layer, edge computing layer, and CDC layer. Based on it, this work designs a profit-maximized collaborative computation offloading and resource allocation algorithm to maximize the profit of systems and guarantee that response time limits of tasks are strictly met. In each time slot, this work jointly considers CPU, memory, and bandwidth resources, load balance of all heterogeneous nodes in the edge layer, maximum amount of energy, maximum number of servers, and task queue stability in the CDC layer. Considering the abovementioned factors, a single-objective constrained optimization problem is formulated and solved by a proposed simulated-annealing-based migrating birds optimization procedure to obtain a close-to-optimal solution. The proposed method achieves joint optimization of computation offloading between CDC and edge, and resource allocation in CDC. Realistic data-based simulation results demonstrate that it realizes higher profit than its peers. Note to Practitioners —This work considers the joint optimization of computation offloading between Cloud data center (CDC) and edge computing layers, and resource allocation in CDC. It is important to maximize the profit of distributed cloud and edge computing systems by optimally scheduling all tasks between them given user-specific response time limits of tasks. It is challenging to execute them in nodes in the edge computing layer because their computation resources and battery capacities are often constrained and heterogeneous. Current offloading methods fail to jointly optimize computation offloading and resource allocation for nodes in the edge and servers in CDC. They are insufficient and coarse-grained to schedule arriving tasks. In this work, a novel algorithm is proposed to maximize the profit of distributed cloud and edge computing systems while meeting response time limits of tasks. It explicitly specifies the task service rate and the selected node for each task in each time slot by considering resource limits, load balance requirement, and processing capacities of nodes in the edge, and server and energy constraints in CDC. Real-life data-driven simulations show that the proposed method realizes a larger profit than several typical offloading strategies. It can be readily implemented and incorporated into large-scale industrial computing systems. |
| Author | Zhou, MengChu Yuan, Haitao |
| Author_xml | – sequence: 1 givenname: Haitao orcidid: 0000-0001-8475-419X surname: Yuan fullname: Yuan, Haitao email: haitao.yuan@njit.edu organization: Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ, USA – sequence: 2 givenname: MengChu orcidid: 0000-0002-5408-8752 surname: Zhou fullname: Zhou, MengChu email: zhou@njit.edu organization: Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ, USA |
| BookMark | eNp9kF1LwzAUhoNMcJv-APGm4HVnPpv2csz5ARPFzeuSNsnI6JqZpOIE_7utnV544VVO4H3ec3hGYFDbWgFwjuAEIZhdrabL-QRDDCcEQpjR5AgMEWNpTHhKBt1MWcwyxk7AyPsNhJimGRyCzydntQnxg3g3W_OhZDSzVSUK60Qwb6r9bXdNaGdbR49aV1ZIU68jUcvoWXnbuFJF06qyZR8xdXRtfHCmaELXVdlGfofncv1T1vHLvQ9q60_BsRaVV2eHdwxebuar2V28eLy9n00XcYkzEmJZcEIYKyHDWCaccFjolGZYcSmQkEylrMCl4kxrkciUEV4ITjEpscBMQE7G4LLv3Tn72igf8k17et2uzDGjPKGcJaRNoT5VOuu9UzrfObMVbp8jmHeW885y3lnOD5Zbhv9hStPrCk6Y6l_yoieNUup3U4YoJIiTL5VVjfQ |
| CODEN | ITASC7 |
| CitedBy_id | crossref_primary_10_1109_TSC_2025_3552338 crossref_primary_10_1016_j_future_2024_04_055 crossref_primary_10_1109_JIOT_2021_3100117 crossref_primary_10_1007_s11227_023_05059_9 crossref_primary_10_1007_s11770_024_1039_1 crossref_primary_10_1109_TNSM_2023_3267809 crossref_primary_10_3390_fi14020030 crossref_primary_10_1109_TPDS_2024_3486184 crossref_primary_10_1007_s00170_023_11252_0 crossref_primary_10_1155_2021_9529022 crossref_primary_10_4018_IJGHPC_316837 crossref_primary_10_1109_TETCI_2023_3339540 crossref_primary_10_1007_s12652_023_04587_9 crossref_primary_10_1109_ACCESS_2022_3206359 crossref_primary_10_1109_TASE_2022_3228250 crossref_primary_10_3390_s22010011 crossref_primary_10_1016_j_jii_2025_100776 crossref_primary_10_1109_TSMC_2020_3042898 crossref_primary_10_1109_TVT_2023_3237369 crossref_primary_10_1109_TGCN_2023_3306002 crossref_primary_10_1007_s10723_024_09790_2 crossref_primary_10_1109_JIOT_2024_3524868 crossref_primary_10_1109_JIOT_2023_3234966 crossref_primary_10_1109_TASE_2020_3046673 crossref_primary_10_1016_j_istruc_2025_109954 crossref_primary_10_1109_TCE_2025_3546948 crossref_primary_10_1016_j_sysarc_2025_103447 crossref_primary_10_1007_s00607_025_01500_4 crossref_primary_10_3390_sym15050985 crossref_primary_10_1109_TASE_2020_3048056 crossref_primary_10_1016_j_future_2024_01_015 crossref_primary_10_1016_j_ins_2024_120530 crossref_primary_10_1109_TASE_2022_3176745 crossref_primary_10_1016_j_ins_2025_122138 crossref_primary_10_1109_TCC_2022_3194713 crossref_primary_10_1016_j_phycom_2023_102065 crossref_primary_10_1109_TNSE_2021_3123280 crossref_primary_10_1109_JIOT_2021_3121796 crossref_primary_10_1109_ACCESS_2023_3322650 crossref_primary_10_1016_j_compind_2024_104131 crossref_primary_10_1109_TITS_2022_3177404 crossref_primary_10_1109_JAS_2020_1003515 crossref_primary_10_1109_TVT_2022_3143828 crossref_primary_10_1007_s11227_023_05387_w crossref_primary_10_1109_JIOT_2022_3233830 crossref_primary_10_1016_j_sysarc_2025_103469 crossref_primary_10_1016_j_procir_2024_07_006 crossref_primary_10_25139_ijair_v6i2_8597 crossref_primary_10_1016_j_comnet_2025_111482 crossref_primary_10_1109_TASE_2023_3316287 crossref_primary_10_3390_s25164913 crossref_primary_10_1109_JAS_2022_105695 crossref_primary_10_1109_JIOT_2024_3508693 crossref_primary_10_1007_s10462_022_10230_4 crossref_primary_10_1109_TNNLS_2021_3105901 crossref_primary_10_1016_j_engappai_2025_111108 crossref_primary_10_1109_JIOT_2024_3395276 crossref_primary_10_1109_TASE_2023_3292908 crossref_primary_10_1109_TII_2021_3114300 crossref_primary_10_1007_s10586_023_04017_7 crossref_primary_10_1016_j_eswa_2024_123896 crossref_primary_10_3390_pr11082447 crossref_primary_10_1002_cpe_70091 crossref_primary_10_1109_TNSM_2023_3266238 crossref_primary_10_1109_JIOT_2024_3486619 crossref_primary_10_1109_JIOT_2025_3527704 crossref_primary_10_1109_TASE_2023_3289908 crossref_primary_10_1186_s13677_023_00452_4 crossref_primary_10_1109_JIOT_2022_3233026 crossref_primary_10_1109_JIOT_2025_3542428 crossref_primary_10_1109_TNSM_2022_3213761 crossref_primary_10_1109_TSMC_2022_3219380 crossref_primary_10_1109_ACCESS_2024_3385230 crossref_primary_10_1109_ACCESS_2020_3035181 crossref_primary_10_1109_ACCESS_2022_3175850 crossref_primary_10_1109_TMC_2022_3220720 crossref_primary_10_1109_JIOT_2022_3183006 crossref_primary_10_1016_j_engappai_2024_108477 crossref_primary_10_1109_TMC_2021_3096860 crossref_primary_10_1109_TVT_2023_3250486 crossref_primary_10_1007_s11227_025_07295_7 crossref_primary_10_1109_JAS_2022_105425 crossref_primary_10_1109_TASE_2025_3529719 crossref_primary_10_1007_s11036_022_02029_y crossref_primary_10_1007_s11276_024_03886_z crossref_primary_10_1109_JIOT_2025_3525815 crossref_primary_10_1016_j_jpdc_2024_104850 crossref_primary_10_1109_TNSM_2021_3101862 crossref_primary_10_1007_s11276_023_03268_x crossref_primary_10_1109_TCOMM_2022_3221403 crossref_primary_10_1109_TASE_2022_3183633 crossref_primary_10_1109_JIOT_2023_3262849 crossref_primary_10_1007_s10462_022_10296_0 crossref_primary_10_1007_s10586_024_04815_7 crossref_primary_10_1109_JIOT_2024_3395331 crossref_primary_10_1007_s10586_025_05197_0 crossref_primary_10_1002_cpe_8139 crossref_primary_10_1016_j_comnet_2024_110618 crossref_primary_10_1109_TR_2023_3335969 crossref_primary_10_1109_JIOT_2023_3293497 crossref_primary_10_1109_TCC_2025_3548043 crossref_primary_10_47164_ijngc_v13i1_412 crossref_primary_10_1109_TCCN_2024_3392809 crossref_primary_10_1109_TSC_2025_3589122 crossref_primary_10_1007_s42486_024_00156_x crossref_primary_10_1109_MRA_2023_3266618 crossref_primary_10_1109_JIOT_2020_3022534 crossref_primary_10_1002_cpe_7682 crossref_primary_10_1002_cpe_70078 crossref_primary_10_1109_TASE_2023_3330148 crossref_primary_10_7717_peerj_cs_851 crossref_primary_10_1109_ACCESS_2024_3384562 crossref_primary_10_1109_JIOT_2021_3097764 crossref_primary_10_1016_j_comnet_2024_110468 crossref_primary_10_1051_epjconf_202532605007 crossref_primary_10_1016_j_comnet_2022_109383 crossref_primary_10_1109_TSC_2022_3177316 crossref_primary_10_1007_s40010_023_00809_z crossref_primary_10_1109_TNSM_2023_3348124 crossref_primary_10_1109_JIOT_2025_3557431 crossref_primary_10_1109_TVT_2021_3121096 crossref_primary_10_1109_JSEN_2023_3304301 crossref_primary_10_1109_TITS_2023_3271788 crossref_primary_10_1109_ACCESS_2020_3029649 crossref_primary_10_1016_j_compeleceng_2022_108510 crossref_primary_10_1016_j_vehcom_2023_100654 crossref_primary_10_1109_JAS_2022_106100 crossref_primary_10_1109_JIOT_2021_3127203 crossref_primary_10_1016_j_phycom_2025_102848 crossref_primary_10_3390_electronics13173383 crossref_primary_10_1007_s10878_022_00894_7 crossref_primary_10_1109_TVT_2021_3133586 crossref_primary_10_3389_fbioe_2022_908056 crossref_primary_10_1109_TASE_2025_3557934 |
| Cites_doi | 10.1109/TASE.2017.2785241 10.1016/j.asoc.2017.07.023 10.1109/TVT.2019.2904244 10.1109/JIOT.2018.2875909 10.1109/TCOMM.2016.2599530 10.1109/TASE.2015.2427234 10.1016/j.neucom.2015.12.061 10.1109/JIOT.2018.2882783 10.1109/JIOT.2018.2876279 10.1109/TASE.2016.2526781 10.1109/TPDS.2019.2893925 10.1109/JAS.2017.7510436 10.1109/LWC.2017.2740927 10.1109/TPDS.2014.2353051 10.1109/TMC.2018.2865312 10.1109/TVT.2014.2372852 10.1109/TASE.2015.2503325 10.1016/j.future.2015.03.009 10.1109/TASE.2018.2858290 10.1109/LWC.2017.2780128 10.1109/TCYB.2016.2574766 10.1109/TASE.2017.2784826 10.1109/TSG.2016.2562565 10.1109/JSYST.2013.2289556 10.1109/TASE.2018.2826723 10.1109/TPDS.2012.203 10.1109/JIOT.2017.2780236 10.1016/j.ins.2012.06.032 10.1109/TVT.2019.2917890 10.1109/JSTSP.2016.2637164 10.1109/TVT.2019.2905432 10.1109/TCYB.2015.2475174 10.1109/JIOT.2018.2875520 10.1109/TMC.2018.2847337 10.1109/LCOMM.2019.2897630 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
| DOI | 10.1109/TASE.2020.3000946 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-3783 |
| EndPage | 1287 |
| ExternalDocumentID | 10_1109_TASE_2020_3000946 9140317 |
| Genre | orig-research |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c293t-db73355c0522d67370bf8492e7da1ad5e85b2ce75ffa6d8537ba7423c2a25a073 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 157 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000670593000032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1545-5955 |
| IngestDate | Sun Nov 30 03:52:06 EST 2025 Tue Nov 18 19:41:25 EST 2025 Sat Nov 29 04:12:47 EST 2025 Wed Aug 27 02:26:47 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-db73355c0522d67370bf8492e7da1ad5e85b2ce75ffa6d8537ba7423c2a25a073 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-8475-419X 0000-0002-5408-8752 |
| PQID | 2547647563 |
| PQPubID | 27623 |
| PageCount | 11 |
| ParticipantIDs | crossref_primary_10_1109_TASE_2020_3000946 proquest_journals_2547647563 crossref_citationtrail_10_1109_TASE_2020_3000946 ieee_primary_9140317 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-07-01 |
| PublicationDateYYYYMMDD | 2021-07-01 |
| PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on automation science and engineering |
| PublicationTitleAbbrev | TASE |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref34 ref12 ref15 ref14 ref31 ref30 ref33 ref11 ref32 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref8 doi: 10.1109/TASE.2017.2785241 – ident: ref31 doi: 10.1016/j.asoc.2017.07.023 – ident: ref15 doi: 10.1109/TVT.2019.2904244 – ident: ref19 doi: 10.1109/JIOT.2018.2875909 – ident: ref25 doi: 10.1109/TCOMM.2016.2599530 – ident: ref32 doi: 10.1109/TASE.2015.2427234 – ident: ref35 doi: 10.1016/j.neucom.2015.12.061 – ident: ref11 doi: 10.1109/JIOT.2018.2882783 – ident: ref16 doi: 10.1109/JIOT.2018.2876279 – ident: ref3 doi: 10.1109/TASE.2016.2526781 – ident: ref28 doi: 10.1109/TPDS.2019.2893925 – ident: ref33 doi: 10.1109/JAS.2017.7510436 – ident: ref13 doi: 10.1109/LWC.2017.2740927 – ident: ref22 doi: 10.1109/TPDS.2014.2353051 – ident: ref18 doi: 10.1109/TMC.2018.2865312 – ident: ref24 doi: 10.1109/TVT.2014.2372852 – ident: ref2 doi: 10.1109/TASE.2015.2503325 – ident: ref26 doi: 10.1016/j.future.2015.03.009 – ident: ref29 doi: 10.1109/TASE.2018.2858290 – ident: ref10 doi: 10.1109/LWC.2017.2780128 – ident: ref5 doi: 10.1109/TCYB.2016.2574766 – ident: ref1 doi: 10.1109/TASE.2017.2784826 – ident: ref27 doi: 10.1109/TSG.2016.2562565 – ident: ref6 doi: 10.1109/JSYST.2013.2289556 – ident: ref7 doi: 10.1109/TASE.2018.2826723 – ident: ref21 doi: 10.1109/TPDS.2012.203 – ident: ref4 doi: 10.1109/JIOT.2017.2780236 – ident: ref30 doi: 10.1016/j.ins.2012.06.032 – ident: ref9 doi: 10.1109/TVT.2019.2917890 – ident: ref23 doi: 10.1109/JSTSP.2016.2637164 – ident: ref20 doi: 10.1109/TVT.2019.2905432 – ident: ref34 doi: 10.1109/TCYB.2015.2475174 – ident: ref14 doi: 10.1109/JIOT.2018.2875520 – ident: ref12 doi: 10.1109/TMC.2018.2847337 – ident: ref17 doi: 10.1109/LCOMM.2019.2897630 |
| SSID | ssj0024890 |
| Score | 2.614634 |
| Snippet | Edge computing is a new architecture to provide computing, storage, and networking resources for achieving the Internet of Things. It brings computation to the... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1277 |
| SubjectTerms | Algorithms Cloud computing Cloud data centers (CDCs) Collaboration Computation offloading Constraint modelling Data centers Edge computing intelligent optimization Internet of Things Load balancing migrating birds optimization (MBO) Nodes Optimization Resource allocation Resource management Response time Response time (computers) Schedules Servers Simulated annealing simulated annealing (SA) Simulation Task scheduling |
| Title | Profit-Maximized Collaborative Computation Offloading and Resource Allocation in Distributed Cloud and Edge Computing Systems |
| URI | https://ieeexplore.ieee.org/document/9140317 https://www.proquest.com/docview/2547647563 |
| Volume | 18 |
| WOSCitedRecordID | wos000670593000032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-3783 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0024890 issn: 1545-5955 databaseCode: RIE dateStart: 20040101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB6seNCDrypWq-zBkxhN0mx2cyy1xYsPsIK3sE8p1ET6EBH87-5s06oogrccZpYlX7Izszv7fQDHkTQ2tBxbdXgLSbV5ILMkCUSaSMV0KK2yXmyCXV_zh4fsdglOF3dhjDG--cyc4aM_y9elmuJW2XmG5HIRq0GNsXR2V-uTV4_7_RTMCAKaUVqdYEZhdt5v33VdJRi7AtV30qXfYpAXVfmxEvvw0tv438Q2Yb1KI0l7hvsWLJliG9a-kAvW4f0W5bgnwZV4HTwN3owmnU_MXwyZ6Tl4YMiNtcPSd9MTUWgy39Mn7SHGOm8yKMgFkuyiPhaONSyn2ht39eN8MPSvKNB34L7X7Xcug0psIVAu4k8CLVnL5R4qdAmZRvEaBxNPstgwLSKhqeFUxsowaq1ItQvyTAo85VWxiKlwC8UuLBdlYfaA-KyHW0ZTbpLE0CySLssRqbQta6RSDQjnrz9XFRM5CmIMc1-RhFmOiOWIWF4h1oCThcvzjIbjL-M6QrQwrNBpQHOOcV79qOPc1ccsTdxUW_u_ex3AaoxtLL5DtwnLk9HUHMKKepkMxqMj_w1-ANUG2vI |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED5BNwl4YGwM0Y2BH_Y0LWuS2rHzWJUiEFCQ1km8Rf45RSop6i8hJP53fG5amJgm7S0Pd5aVL_Hd2efvA_iaKOtiJ7BVR7SRVFtEKqc0khlVmptYOe2C2ATv98XNTX69Bt9Xd2GstaH5zP7Ax3CWb0Z6hltlrRzJ5RK-Dm8YpWm8uK31zKwnwo4K5gQRyxmrzzCTOG8NOj97vhZMfYkaeumyP6JQkFV5tRaHAHPy7v-mtgPbdSJJOgvk38OarT7A1gt6wV14vEZB7ml0Ke_L2_LBGtJ9Rn1uyULRIUBDrpwbjkI_PZGVIctdfdIZYrQLJmVFjpFmFxWycKzhaGaCcc_8Xg6G_jUJ-kf4ddIbdE-jWm4h0j7mTyOjeNtnHzr2KZlB-RoPlKB5armRiTTMCqZSbTlzTmbGh3muJJ7z6lSmTPqlYg8a1aiy-0BC3iMcZ5mwlFqWJ8rnOTJTru2s0roJ8fL1F7rmIkdJjGERapI4LxCxAhErasSa8G3lcrcg4viX8S5CtDKs0WnCwRLjov5VJ4WvkHlG_VTbn_7udQQbp4PLi-LirH_-GTZTbGoJ_boH0JiOZ_YLvNXzaTkZH4bv8QldlN45 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Profit-Maximized+Collaborative+Computation+Offloading+and+Resource+Allocation+in+Distributed+Cloud+and+Edge+Computing+Systems&rft.jtitle=IEEE+transactions+on+automation+science+and+engineering&rft.au=Yuan%2C+Haitao&rft.au=Zhou%2C+MengChu&rft.date=2021-07-01&rft.issn=1545-5955&rft.eissn=1558-3783&rft.volume=18&rft.issue=3&rft.spage=1277&rft.epage=1287&rft_id=info:doi/10.1109%2FTASE.2020.3000946&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TASE_2020_3000946 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5955&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5955&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5955&client=summon |