Pattern Synthesis for Sparse Linear Arrays via Atomic Norm Minimization

In this letter, a novel pattern synthesis algorithm that jointly optimizes the number, positions, and excitation of elements in a sparse linear array (SLA) is designed based on continuous compressed sensing. The pattern synthesis problem is first formulated as a sparse recovery problem, which can be...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE antennas and wireless propagation letters Ročník 20; číslo 12; s. 2215 - 2219
Hlavní autoři: Wang, Zhen, Sun, Guohao, Tong, Jun, Ji, Yuandong
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.12.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1536-1225, 1548-5757
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this letter, a novel pattern synthesis algorithm that jointly optimizes the number, positions, and excitation of elements in a sparse linear array (SLA) is designed based on continuous compressed sensing. The pattern synthesis problem is first formulated as a sparse recovery problem, which can be solved using semidefinite programming involving atomic norm minimization (ANM). The parameters of the designed SLA, including the corresponding element positions and excitations, are determined via Vandermonde decomposition and least squares in the continuous domain. As ANM works directly in the continuous domain, the proposed algorithm is able to synthesize the desired patterns with a small mismatch and a small number of elements. A number of representative numerical experiments show the effectiveness of our algorithm.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1536-1225
1548-5757
DOI:10.1109/LAWP.2021.3103514