An Intelligent Detection Method for Different Types of Outliers in Multibeam Bathymetric Point Cloud
Bathymetric Multibeam echo sounder systems (MBESs) are the most effective and reliable way to survey the earth's seafloor. However, multibeam bathymetric data inevitably contain different types of outliers due to measurement characteristics and complex underwater environments. The traditional a...
Uložené v:
| Vydané v: | IEEE transactions on geoscience and remote sensing Ročník 60; s. 1 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 0196-2892, 1558-0644 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Bathymetric Multibeam echo sounder systems (MBESs) are the most effective and reliable way to survey the earth's seafloor. However, multibeam bathymetric data inevitably contain different types of outliers due to measurement characteristics and complex underwater environments. The traditional automatic approach to eliminate outliers may lead to more than one of the questions of reliability, limitation, and efficiency, respectively. This paper offers an algorithm aiming to detect different types of outliers by considering their characteristic of distribution and distance of them, rapidly. First, a coding octree based on Morton code is built to guarantee perfect efficiency and space division. Second, coarse outlier removal is performed by octree-based voxelized representation of the bathymetric data, and outliers far away from the seafloor will be detected and eliminated by connected component labeling. Third, fine outlier removal is employed to delete outliers connected closely to the seafloor by the improved morphological method based on the combination of the k-d tree and octree. Experimental results show that the proposed algorithm can achieve promising results. The percent of outliers that are detected by the hand-edit method that is regarded as a reference result is 5.06%. 4.70% of points in a total number of 3645541 points are detected in our method. Compared with other classical filtering methods, the intelligent method for detecting different types of the outlier from coarse to fine attains favorable performance in a reasonable time, avoiding over-filtering, and demonstrates high reliability for multibeam bathymetric point cloud. |
|---|---|
| AbstractList | Bathymetric Multibeam echo sounder systems (MBESs) are the most effective and reliable way to survey the earth's seafloor. However, multibeam bathymetric data inevitably contain different types of outliers due to measurement characteristics and complex underwater environments. The traditional automatic approach to eliminate outliers may lead to more than one of the questions of reliability, limitation, and efficiency, respectively. This paper offers an algorithm aiming to detect different types of outliers by considering their characteristic of distribution and distance of them, rapidly. First, a coding octree based on Morton code is built to guarantee perfect efficiency and space division. Second, coarse outlier removal is performed by octree-based voxelized representation of the bathymetric data, and outliers far away from the seafloor will be detected and eliminated by connected component labeling. Third, fine outlier removal is employed to delete outliers connected closely to the seafloor by the improved morphological method based on the combination of the k-d tree and octree. Experimental results show that the proposed algorithm can achieve promising results. The percent of outliers that are detected by the hand-edit method that is regarded as a reference result is 5.06%. 4.70% of points in a total number of 3645541 points are detected in our method. Compared with other classical filtering methods, the intelligent method for detecting different types of the outlier from coarse to fine attains favorable performance in a reasonable time, avoiding over-filtering, and demonstrates high reliability for multibeam bathymetric point cloud. Bathymetric multibeam echo sounder systems (MBESs) are the most effective and reliable way to survey the Earth’s seafloor. However, multibeam bathymetric data inevitably contain different types of outliers due to measurement characteristics and complex underwater environments. The traditional automatic approach to eliminate outliers may lead to more than one of the questions of reliability, limitation, and efficiency. This article offers an algorithm aiming to detect different types of outliers by considering their characteristic of distribution and distance of them rapidly. First, a coding octree based on the Morton code is built to guarantee perfect efficiency and space division. Second, coarse outlier removal is performed by the octree-based voxelized representation of the bathymetric data, and outliers far away from the seafloor will be detected and eliminated by connected component labeling. Third, fine outlier removal is employed to delete outliers connected closely to the seafloor by the improved morphological method based on the combination of the k-D tree and octree. Experimental results show that the proposed algorithm can achieve promising results. The percent of outliers that are detected by the hand-edit method that is regarded as a reference result is 5.06%; 4.70% of points in a total number of 3 645 541 points are detected in our method. Compared with other classical filtering methods, the intelligent method for detecting different types of outliers from coarse to fine attains favorable performance in a reasonable time, avoiding overfiltering, and demonstrates high reliability for multibeam bathymetric point cloud. |
| Author | Bu, Xianhai Tu, Zejie Yang, Fanlin Yan, Xunpeng Xu, Fangzheng Fan, Miao |
| Author_xml | – sequence: 1 givenname: Fanlin orcidid: 0000-0001-7934-5850 surname: Yang fullname: Yang, Fanlin organization: College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao, China – sequence: 2 givenname: Fangzheng orcidid: 0000-0002-0069-9048 surname: Xu fullname: Xu, Fangzheng organization: College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao, China – sequence: 3 givenname: Miao orcidid: 0000-0002-0377-9860 surname: Fan fullname: Fan, Miao organization: Ocean Science and Technology College, Tianjin University, Tianjin, China – sequence: 4 givenname: Xianhai surname: Bu fullname: Bu, Xianhai organization: College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao, China – sequence: 5 givenname: Zejie surname: Tu fullname: Tu, Zejie organization: College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao, China – sequence: 6 givenname: Xunpeng surname: Yan fullname: Yan, Xunpeng organization: College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao, China |
| BookMark | eNp9kDtPwzAUhS1UJMrjByAWS8wpfjbxWMqrEggEZbYc55q6SuPiOEP_PYlaMTAw3eGe7xzpO0WjJjSA0CUlE0qJulk-vn9MGGFswhlRXIgjNKZSFhmZCjFCY0LVNGOFYifotG3XhFAhaT5G1azBiyZBXfsvaBK-gwQ2-dDgF0irUGEXIr7zzkEc3svdFlocHH7tUu0httj3ya5OvgSzwbcmrXYbSNFb_BZ8D8zr0FXn6NiZuoWLwz1Dnw_3y_lT9vz6uJjPnjPLFE9ZxSyRzAhhZUWnpVOsBFdRUVR5wUvCKQEmbVEaqxyAUYW0UqmClkwaagTnZ-h637uN4buDNul16GLTT2qWsyklOZOsT9F9ysbQthGc3ka_MXGnKdGDTD3I1INMfZDZM_kfxvpkBk8pGl__S17tSQ8Av0tKEU5kzn8AE6yEaA |
| CODEN | IGRSD2 |
| CitedBy_id | crossref_primary_10_1080_01490419_2025_2560889 crossref_primary_10_3390_s24051476 crossref_primary_10_1109_TGRS_2024_3364252 crossref_primary_10_1080_01490419_2024_2408684 crossref_primary_10_1080_01490419_2025_2495182 crossref_primary_10_1109_JSTARS_2024_3470527 |
| Cites_doi | 10.25103/jestr.113.10 10.1186/s40537-020-00374-x 10.3390/geosciences10070254 10.1145/1869790.1869815 10.1109/TIP.2011.2114352 10.2166/hydro.2013.234 10.1016/j.isprsjprs.2013.12.001 10.1145/2492045.2492048 10.1109/TGRS.2021.3097723 10.1098/rsos.201784 10.1016/j.isprsjprs.2020.03.004 10.1007/s11001-014-9228-6 10.1007/s11001-012-9164-2 10.1109/IGARSS.2016.7730186 10.1145/342009.335388 10.1029/2002GC000486 10.1109/TGRS.2019.2946986 10.1109/TGRS.2003.810682 10.1007/BF00286091 10.1016/j.isprsjprs.2015.01.011 10.1007/978-981-15-9750-3 10.1016/j.cageo.2012.01.012 10.1109/JOE.2002.808204 10.1109/OCEANSE.2019.8867321 10.1145/1645953.1646195 10.1016/j.isprsjprs.2012.10.004 10.1007/BF00313877 10.3390/rs8010035 10.1109/ACCESS.2017.2781801 10.1007/BF00313878 10.1016/j.cagd.2005.03.006 10.1007/s10044-008-0109-y 10.1016/j.cageo.2008.05.009 10.1109/ICRA.2011.5980567 10.1007/3-540-26535-X_34 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| DOI | 10.1109/TGRS.2022.3209344 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1558-0644 |
| EndPage | 1 |
| ExternalDocumentID | 10_1109_TGRS_2022_3209344 9903057 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Project to Attract Foreign Experts grantid: G2021025006L – fundername: National Natural Science Foundation of China grantid: 41930535 funderid: 10.13039/501100001809 – fundername: Shandong Graduate Education Innovation Program?Construction Project grantid: SDYJG19083 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AASAJ AAWTH ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 Y6R AAYXX CITATION 7UA 8FD AARMG ABAZT C1K F1W FR3 H8D H96 KR7 L.G L7M |
| ID | FETCH-LOGICAL-c293t-d2c052a44c5d16bf92befd148d783b0310e25c8bac9feea985c59981b25a1a433 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000870339900009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0196-2892 |
| IngestDate | Mon Jun 30 08:25:28 EDT 2025 Sat Nov 29 02:50:26 EST 2025 Tue Nov 18 22:32:50 EST 2025 Tue Nov 25 14:44:26 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-d2c052a44c5d16bf92befd148d783b0310e25c8bac9feea985c59981b25a1a433 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0069-9048 0000-0002-0377-9860 0000-0001-7934-5850 |
| PQID | 2726107252 |
| PQPubID | 85465 |
| PageCount | 1 |
| ParticipantIDs | crossref_primary_10_1109_TGRS_2022_3209344 proquest_journals_2726107252 crossref_citationtrail_10_1109_TGRS_2022_3209344 ieee_primary_9903057 |
| PublicationCentury | 2000 |
| PublicationDate | 20220000 2022-00-00 20220101 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – year: 2022 text: 20220000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on geoscience and remote sensing |
| PublicationTitleAbbrev | TGRS |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref34 ref15 ref37 Elseberg (ref43) 2012; 3 ref31 ref30 ref11 ref33 ref10 ref32 ref2 Calder (ref28) ref1 Du (ref12) 1996; 7 ref17 ref39 ref16 ref38 ref18 Huang (ref19) 2010; 35 Clarke (ref7) 2003; 4 Girardeau-Montaut (ref36) 2005; 36 Chen (ref25) 2006; 26 ref24 ref26 ref20 ref42 ref41 ref22 ref44 ref21 (ref45) 2017 ref27 ref29 ref8 ref9 ref4 ref3 ref6 ref5 Goldstein (ref23) Du (ref14) 1996; 79 ref40 |
| References_xml | – ident: ref26 doi: 10.25103/jestr.113.10 – ident: ref42 doi: 10.1186/s40537-020-00374-x – ident: ref13 doi: 10.3390/geosciences10070254 – ident: ref30 doi: 10.1145/1869790.1869815 – ident: ref38 doi: 10.1109/TIP.2011.2114352 – ident: ref20 doi: 10.2166/hydro.2013.234 – ident: ref32 doi: 10.1016/j.isprsjprs.2013.12.001 – ident: ref35 doi: 10.1145/2492045.2492048 – ident: ref2 doi: 10.1109/TGRS.2021.3097723 – ident: ref37 doi: 10.1098/rsos.201784 – volume: 4 start-page: 6 issue: 1 year: 2003 ident: ref7 article-title: Dynamic motion residuals in swath sonar data: Ironing out the creases publication-title: Int. Hydrogr. Rev. – ident: ref11 doi: 10.1016/j.isprsjprs.2020.03.004 – ident: ref6 doi: 10.1007/s11001-014-9228-6 – ident: ref8 doi: 10.1007/s11001-012-9164-2 – ident: ref44 doi: 10.1109/IGARSS.2016.7730186 – volume-title: CloudCompare (Version 2.9.1) [GPL Software] year: 2017 ident: ref45 – ident: ref17 doi: 10.1145/342009.335388 – ident: ref3 doi: 10.1029/2002GC000486 – ident: ref5 doi: 10.1109/TGRS.2019.2946986 – volume: 35 start-page: 1187 issue: 10 year: 2010 ident: ref19 article-title: Application of least square support vector machine to detecting outliers of multi-beam data publication-title: Geomatics Inf. Sci. Wuhan Univ. – ident: ref40 doi: 10.1109/TGRS.2003.810682 – volume: 3 start-page: 2 issue: 1 year: 2012 ident: ref43 article-title: Comparison of nearest-neighbor-search strategies and implementations for efficient shape registration publication-title: J. Softw. Eng. Robot. – ident: ref22 doi: 10.1007/BF00286091 – ident: ref33 doi: 10.1016/j.isprsjprs.2015.01.011 – volume: 36 start-page: W19 issue: 3 year: 2005 ident: ref36 article-title: Change detection on points cloud data acquired with a ground laser scanner publication-title: Int. Arch. Photogramm., Remote Sens. Spatial Inf. Sci. – volume: 79 start-page: 19 year: 1996 ident: ref14 article-title: An approach to automatic detection of outliers in multibeam echo sounding data publication-title: Hydrograph. J. – ident: ref4 doi: 10.1007/978-981-15-9750-3 – start-page: 1 volume-title: Proc. U.S. HYDRO ident: ref28 article-title: Robust automatic multi-beam bathymetric processing – ident: ref29 doi: 10.1016/j.cageo.2012.01.012 – ident: ref9 doi: 10.1109/JOE.2002.808204 – ident: ref16 doi: 10.1109/OCEANSE.2019.8867321 – ident: ref24 doi: 10.1145/1645953.1646195 – ident: ref34 doi: 10.1016/j.isprsjprs.2012.10.004 – volume: 26 start-page: 15 issue: 6 year: 2006 ident: ref25 article-title: Gross error elimination in DEM data based on adaptive robust least squares estimation publication-title: Hydrograph. Surv. Charting – ident: ref1 doi: 10.1007/BF00313877 – ident: ref41 doi: 10.3390/rs8010035 – ident: ref10 doi: 10.1109/ACCESS.2017.2781801 – volume: 7 start-page: 737 issue: 43 year: 1996 ident: ref12 article-title: An approach to automatic detection of outliers in multibeam echo sounding data publication-title: Oceanographic Literature Rev. – ident: ref15 doi: 10.1007/BF00313878 – start-page: 59 volume-title: Proc. KI, Poster Demo Track ident: ref23 article-title: Histogram-based outlier score (HBOS): A fast unsupervised anomaly detection algorithm – ident: ref31 doi: 10.1016/j.cagd.2005.03.006 – ident: ref39 doi: 10.1007/s10044-008-0109-y – ident: ref21 doi: 10.1016/j.cageo.2008.05.009 – ident: ref18 doi: 10.1109/ICRA.2011.5980567 – ident: ref27 doi: 10.1007/3-540-26535-X_34 |
| SSID | ssj0014517 |
| Score | 2.4307702 |
| Snippet | Bathymetric Multibeam echo sounder systems (MBESs) are the most effective and reliable way to survey the earth's seafloor. However, multibeam bathymetric data... Bathymetric multibeam echo sounder systems (MBESs) are the most effective and reliable way to survey the Earth’s seafloor. However, multibeam bathymetric data... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Bathymetric data Building codes coding octree connected component labeling Data analysis different types of outliers Echo sounding Echoes Encoding Geodesy Geomagnetism Methods Multibeam bathymetric point cloud Ocean floor Octree coding Octrees outlier removal Outliers (statistics) Point cloud compression Reliability Removal Sea floor Surveying System effectiveness Three-dimensional displays |
| Title | An Intelligent Detection Method for Different Types of Outliers in Multibeam Bathymetric Point Cloud |
| URI | https://ieeexplore.ieee.org/document/9903057 https://www.proquest.com/docview/2726107252 |
| Volume | 60 |
| WOSCitedRecordID | wos000870339900009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0644 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014517 issn: 0196-2892 databaseCode: RIE dateStart: 19800101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0BKlJ7gPJRdfmofOBUEUicOI6PW2ApByhqQeIWOfZEWmk3qdgsEv-esddERSCk3qJoHEV5jmeeZzwP4EAqFLVAGSVKx1HGESNdpTZSsS7qlO4Zrb3YhLy6Ku7u1PUSHPZnYRDRF5_hkbv0uXzbmrnbKjumlZOmp1yGZSnzxVmtPmOQiSQcjc4jIhE8ZDCTWB3fnP_-Q0yQ86OUE4HPshc-yIuqvFqJvXsZrf_fi32GtRBGsuEC9w1YwmYTPv3TXHATVn1xp5ltgR027KJvvdmxU-x8AVbDLr1-NKPAlZ0GpZSOOWo6Y23Nfs27iVPKZmOydIWHFeop-0Ex4-PUCXEZdt2OacDJpJ3bbbgdnd2c_IyCukJkyMV3keUmFlxnmRE2yata8QprS-zIyiKtXMdQ5MIUlTaqRtSqEEYQN0sqLnSiszT9AitN2-BXYDnxRisSXeWaCFeREcQiFeQaZS7ICdcDiJ-_d2lC63GngDEpPQWJVekgKh1EZYBoAN_7IX8XfTfeM95ymPSGAY4B7D2DWoY_c1ZySZwxllzwnbdH7cJH9-zFNsserHT3c9yHD-ahG8_uv_lJ9wQTh9Qv |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB3xUVQ40BaK2EJbH3qqGkgcO4mPfJSCClvULhK3yLEn0kpLgtgsEv--Y6-JWlFV4hZFYyXKczzzPON5AJ9yhbKWmEeJ0nEkOGKkq9RGKtZFndI9o7UXm8iHw-L6Wl0uwJf-LAwi-uIz3HOXPpdvWzNzW2X7tHLS9MwXYVkKweP5aa0-ZyBkEg5HZxHRCB5ymEms9kfffv4iLsj5XsqJwgvxlxfysipP1mLvYE5ePe_VXsN6CCTZwRz5N7CAzQas_dFecANWfHmnmW6CPWjYWd98s2PH2PkSrIZdeAVpRqErOw5aKR1z5HTK2pr9mHUTp5XNxmTpSg8r1DfskKLGhxsnxWXYZTumAUeTdmbfwtXJ19HRaRT0FSJDTr6LLDex5FoII22SVbXiFdaW-JHNi7RyPUORS1NU2qgaUatCGknsLKm41IkWaboFS03b4DawjJijlYmuMk2UqxAEskwlOcc8k-SG6wHEj9-7NKH5uNPAmJSehMSqdBCVDqIyQDSAz_2Q23nnjf8ZbzpMesMAxwB2H0Etw785LXlOrDHOueTv_j3qI7w8HV2cl-dnw-87sOqeM9902YWl7m6G7-GFue_G07sPfgL-BkZ913Y |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Intelligent+Detection+Method+for+Different+Types+of+Outliers+in+Multibeam+Bathymetric+Point+Cloud&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Yang%2C+Fanlin&rft.au=Xu%2C+Fangzheng&rft.au=Fan%2C+Miao&rft.au=Bu%2C+Xianhai&rft.date=2022&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=60&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1109%2FTGRS.2022.3209344&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2022_3209344 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |