An Intelligent Detection Method for Different Types of Outliers in Multibeam Bathymetric Point Cloud

Bathymetric Multibeam echo sounder systems (MBESs) are the most effective and reliable way to survey the earth's seafloor. However, multibeam bathymetric data inevitably contain different types of outliers due to measurement characteristics and complex underwater environments. The traditional a...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on geoscience and remote sensing Ročník 60; s. 1
Hlavní autori: Yang, Fanlin, Xu, Fangzheng, Fan, Miao, Bu, Xianhai, Tu, Zejie, Yan, Xunpeng
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0196-2892, 1558-0644
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Bathymetric Multibeam echo sounder systems (MBESs) are the most effective and reliable way to survey the earth's seafloor. However, multibeam bathymetric data inevitably contain different types of outliers due to measurement characteristics and complex underwater environments. The traditional automatic approach to eliminate outliers may lead to more than one of the questions of reliability, limitation, and efficiency, respectively. This paper offers an algorithm aiming to detect different types of outliers by considering their characteristic of distribution and distance of them, rapidly. First, a coding octree based on Morton code is built to guarantee perfect efficiency and space division. Second, coarse outlier removal is performed by octree-based voxelized representation of the bathymetric data, and outliers far away from the seafloor will be detected and eliminated by connected component labeling. Third, fine outlier removal is employed to delete outliers connected closely to the seafloor by the improved morphological method based on the combination of the k-d tree and octree. Experimental results show that the proposed algorithm can achieve promising results. The percent of outliers that are detected by the hand-edit method that is regarded as a reference result is 5.06%. 4.70% of points in a total number of 3645541 points are detected in our method. Compared with other classical filtering methods, the intelligent method for detecting different types of the outlier from coarse to fine attains favorable performance in a reasonable time, avoiding over-filtering, and demonstrates high reliability for multibeam bathymetric point cloud.
AbstractList Bathymetric Multibeam echo sounder systems (MBESs) are the most effective and reliable way to survey the earth's seafloor. However, multibeam bathymetric data inevitably contain different types of outliers due to measurement characteristics and complex underwater environments. The traditional automatic approach to eliminate outliers may lead to more than one of the questions of reliability, limitation, and efficiency, respectively. This paper offers an algorithm aiming to detect different types of outliers by considering their characteristic of distribution and distance of them, rapidly. First, a coding octree based on Morton code is built to guarantee perfect efficiency and space division. Second, coarse outlier removal is performed by octree-based voxelized representation of the bathymetric data, and outliers far away from the seafloor will be detected and eliminated by connected component labeling. Third, fine outlier removal is employed to delete outliers connected closely to the seafloor by the improved morphological method based on the combination of the k-d tree and octree. Experimental results show that the proposed algorithm can achieve promising results. The percent of outliers that are detected by the hand-edit method that is regarded as a reference result is 5.06%. 4.70% of points in a total number of 3645541 points are detected in our method. Compared with other classical filtering methods, the intelligent method for detecting different types of the outlier from coarse to fine attains favorable performance in a reasonable time, avoiding over-filtering, and demonstrates high reliability for multibeam bathymetric point cloud.
Bathymetric multibeam echo sounder systems (MBESs) are the most effective and reliable way to survey the Earth’s seafloor. However, multibeam bathymetric data inevitably contain different types of outliers due to measurement characteristics and complex underwater environments. The traditional automatic approach to eliminate outliers may lead to more than one of the questions of reliability, limitation, and efficiency. This article offers an algorithm aiming to detect different types of outliers by considering their characteristic of distribution and distance of them rapidly. First, a coding octree based on the Morton code is built to guarantee perfect efficiency and space division. Second, coarse outlier removal is performed by the octree-based voxelized representation of the bathymetric data, and outliers far away from the seafloor will be detected and eliminated by connected component labeling. Third, fine outlier removal is employed to delete outliers connected closely to the seafloor by the improved morphological method based on the combination of the k-D tree and octree. Experimental results show that the proposed algorithm can achieve promising results. The percent of outliers that are detected by the hand-edit method that is regarded as a reference result is 5.06%; 4.70% of points in a total number of 3 645 541 points are detected in our method. Compared with other classical filtering methods, the intelligent method for detecting different types of outliers from coarse to fine attains favorable performance in a reasonable time, avoiding overfiltering, and demonstrates high reliability for multibeam bathymetric point cloud.
Author Bu, Xianhai
Tu, Zejie
Yang, Fanlin
Yan, Xunpeng
Xu, Fangzheng
Fan, Miao
Author_xml – sequence: 1
  givenname: Fanlin
  orcidid: 0000-0001-7934-5850
  surname: Yang
  fullname: Yang, Fanlin
  organization: College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao, China
– sequence: 2
  givenname: Fangzheng
  orcidid: 0000-0002-0069-9048
  surname: Xu
  fullname: Xu, Fangzheng
  organization: College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao, China
– sequence: 3
  givenname: Miao
  orcidid: 0000-0002-0377-9860
  surname: Fan
  fullname: Fan, Miao
  organization: Ocean Science and Technology College, Tianjin University, Tianjin, China
– sequence: 4
  givenname: Xianhai
  surname: Bu
  fullname: Bu, Xianhai
  organization: College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao, China
– sequence: 5
  givenname: Zejie
  surname: Tu
  fullname: Tu, Zejie
  organization: College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao, China
– sequence: 6
  givenname: Xunpeng
  surname: Yan
  fullname: Yan, Xunpeng
  organization: College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao, China
BookMark eNp9kDtPwzAUhS1UJMrjByAWS8wpfjbxWMqrEggEZbYc55q6SuPiOEP_PYlaMTAw3eGe7xzpO0WjJjSA0CUlE0qJulk-vn9MGGFswhlRXIgjNKZSFhmZCjFCY0LVNGOFYifotG3XhFAhaT5G1azBiyZBXfsvaBK-gwQ2-dDgF0irUGEXIr7zzkEc3svdFlocHH7tUu0httj3ya5OvgSzwbcmrXYbSNFb_BZ8D8zr0FXn6NiZuoWLwz1Dnw_3y_lT9vz6uJjPnjPLFE9ZxSyRzAhhZUWnpVOsBFdRUVR5wUvCKQEmbVEaqxyAUYW0UqmClkwaagTnZ-h637uN4buDNul16GLTT2qWsyklOZOsT9F9ysbQthGc3ka_MXGnKdGDTD3I1INMfZDZM_kfxvpkBk8pGl__S17tSQ8Av0tKEU5kzn8AE6yEaA
CODEN IGRSD2
CitedBy_id crossref_primary_10_1080_01490419_2025_2560889
crossref_primary_10_3390_s24051476
crossref_primary_10_1109_TGRS_2024_3364252
crossref_primary_10_1080_01490419_2024_2408684
crossref_primary_10_1080_01490419_2025_2495182
crossref_primary_10_1109_JSTARS_2024_3470527
Cites_doi 10.25103/jestr.113.10
10.1186/s40537-020-00374-x
10.3390/geosciences10070254
10.1145/1869790.1869815
10.1109/TIP.2011.2114352
10.2166/hydro.2013.234
10.1016/j.isprsjprs.2013.12.001
10.1145/2492045.2492048
10.1109/TGRS.2021.3097723
10.1098/rsos.201784
10.1016/j.isprsjprs.2020.03.004
10.1007/s11001-014-9228-6
10.1007/s11001-012-9164-2
10.1109/IGARSS.2016.7730186
10.1145/342009.335388
10.1029/2002GC000486
10.1109/TGRS.2019.2946986
10.1109/TGRS.2003.810682
10.1007/BF00286091
10.1016/j.isprsjprs.2015.01.011
10.1007/978-981-15-9750-3
10.1016/j.cageo.2012.01.012
10.1109/JOE.2002.808204
10.1109/OCEANSE.2019.8867321
10.1145/1645953.1646195
10.1016/j.isprsjprs.2012.10.004
10.1007/BF00313877
10.3390/rs8010035
10.1109/ACCESS.2017.2781801
10.1007/BF00313878
10.1016/j.cagd.2005.03.006
10.1007/s10044-008-0109-y
10.1016/j.cageo.2008.05.009
10.1109/ICRA.2011.5980567
10.1007/3-540-26535-X_34
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2022.3209344
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 1
ExternalDocumentID 10_1109_TGRS_2022_3209344
9903057
Genre orig-research
GrantInformation_xml – fundername: Project to Attract Foreign Experts
  grantid: G2021025006L
– fundername: National Natural Science Foundation of China
  grantid: 41930535
  funderid: 10.13039/501100001809
– fundername: Shandong Graduate Education Innovation Program?Construction Project
  grantid: SDYJG19083
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AASAJ
AAWTH
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYXX
CITATION
7UA
8FD
AARMG
ABAZT
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c293t-d2c052a44c5d16bf92befd148d783b0310e25c8bac9feea985c59981b25a1a433
IEDL.DBID RIE
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000870339900009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0196-2892
IngestDate Mon Jun 30 08:25:28 EDT 2025
Sat Nov 29 02:50:26 EST 2025
Tue Nov 18 22:32:50 EST 2025
Tue Nov 25 14:44:26 EST 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-d2c052a44c5d16bf92befd148d783b0310e25c8bac9feea985c59981b25a1a433
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0069-9048
0000-0002-0377-9860
0000-0001-7934-5850
PQID 2726107252
PQPubID 85465
PageCount 1
ParticipantIDs crossref_primary_10_1109_TGRS_2022_3209344
proquest_journals_2726107252
crossref_citationtrail_10_1109_TGRS_2022_3209344
ieee_primary_9903057
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref34
ref15
ref37
Elseberg (ref43) 2012; 3
ref31
ref30
ref11
ref33
ref10
ref32
ref2
Calder (ref28)
ref1
Du (ref12) 1996; 7
ref17
ref39
ref16
ref38
ref18
Huang (ref19) 2010; 35
Clarke (ref7) 2003; 4
Girardeau-Montaut (ref36) 2005; 36
Chen (ref25) 2006; 26
ref24
ref26
ref20
ref42
ref41
ref22
ref44
ref21
(ref45) 2017
ref27
ref29
ref8
ref9
ref4
ref3
ref6
ref5
Goldstein (ref23)
Du (ref14) 1996; 79
ref40
References_xml – ident: ref26
  doi: 10.25103/jestr.113.10
– ident: ref42
  doi: 10.1186/s40537-020-00374-x
– ident: ref13
  doi: 10.3390/geosciences10070254
– ident: ref30
  doi: 10.1145/1869790.1869815
– ident: ref38
  doi: 10.1109/TIP.2011.2114352
– ident: ref20
  doi: 10.2166/hydro.2013.234
– ident: ref32
  doi: 10.1016/j.isprsjprs.2013.12.001
– ident: ref35
  doi: 10.1145/2492045.2492048
– ident: ref2
  doi: 10.1109/TGRS.2021.3097723
– ident: ref37
  doi: 10.1098/rsos.201784
– volume: 4
  start-page: 6
  issue: 1
  year: 2003
  ident: ref7
  article-title: Dynamic motion residuals in swath sonar data: Ironing out the creases
  publication-title: Int. Hydrogr. Rev.
– ident: ref11
  doi: 10.1016/j.isprsjprs.2020.03.004
– ident: ref6
  doi: 10.1007/s11001-014-9228-6
– ident: ref8
  doi: 10.1007/s11001-012-9164-2
– ident: ref44
  doi: 10.1109/IGARSS.2016.7730186
– volume-title: CloudCompare (Version 2.9.1) [GPL Software]
  year: 2017
  ident: ref45
– ident: ref17
  doi: 10.1145/342009.335388
– ident: ref3
  doi: 10.1029/2002GC000486
– ident: ref5
  doi: 10.1109/TGRS.2019.2946986
– volume: 35
  start-page: 1187
  issue: 10
  year: 2010
  ident: ref19
  article-title: Application of least square support vector machine to detecting outliers of multi-beam data
  publication-title: Geomatics Inf. Sci. Wuhan Univ.
– ident: ref40
  doi: 10.1109/TGRS.2003.810682
– volume: 3
  start-page: 2
  issue: 1
  year: 2012
  ident: ref43
  article-title: Comparison of nearest-neighbor-search strategies and implementations for efficient shape registration
  publication-title: J. Softw. Eng. Robot.
– ident: ref22
  doi: 10.1007/BF00286091
– ident: ref33
  doi: 10.1016/j.isprsjprs.2015.01.011
– volume: 36
  start-page: W19
  issue: 3
  year: 2005
  ident: ref36
  article-title: Change detection on points cloud data acquired with a ground laser scanner
  publication-title: Int. Arch. Photogramm., Remote Sens. Spatial Inf. Sci.
– volume: 79
  start-page: 19
  year: 1996
  ident: ref14
  article-title: An approach to automatic detection of outliers in multibeam echo sounding data
  publication-title: Hydrograph. J.
– ident: ref4
  doi: 10.1007/978-981-15-9750-3
– start-page: 1
  volume-title: Proc. U.S. HYDRO
  ident: ref28
  article-title: Robust automatic multi-beam bathymetric processing
– ident: ref29
  doi: 10.1016/j.cageo.2012.01.012
– ident: ref9
  doi: 10.1109/JOE.2002.808204
– ident: ref16
  doi: 10.1109/OCEANSE.2019.8867321
– ident: ref24
  doi: 10.1145/1645953.1646195
– ident: ref34
  doi: 10.1016/j.isprsjprs.2012.10.004
– volume: 26
  start-page: 15
  issue: 6
  year: 2006
  ident: ref25
  article-title: Gross error elimination in DEM data based on adaptive robust least squares estimation
  publication-title: Hydrograph. Surv. Charting
– ident: ref1
  doi: 10.1007/BF00313877
– ident: ref41
  doi: 10.3390/rs8010035
– ident: ref10
  doi: 10.1109/ACCESS.2017.2781801
– volume: 7
  start-page: 737
  issue: 43
  year: 1996
  ident: ref12
  article-title: An approach to automatic detection of outliers in multibeam echo sounding data
  publication-title: Oceanographic Literature Rev.
– ident: ref15
  doi: 10.1007/BF00313878
– start-page: 59
  volume-title: Proc. KI, Poster Demo Track
  ident: ref23
  article-title: Histogram-based outlier score (HBOS): A fast unsupervised anomaly detection algorithm
– ident: ref31
  doi: 10.1016/j.cagd.2005.03.006
– ident: ref39
  doi: 10.1007/s10044-008-0109-y
– ident: ref21
  doi: 10.1016/j.cageo.2008.05.009
– ident: ref18
  doi: 10.1109/ICRA.2011.5980567
– ident: ref27
  doi: 10.1007/3-540-26535-X_34
SSID ssj0014517
Score 2.4307702
Snippet Bathymetric Multibeam echo sounder systems (MBESs) are the most effective and reliable way to survey the earth's seafloor. However, multibeam bathymetric data...
Bathymetric multibeam echo sounder systems (MBESs) are the most effective and reliable way to survey the Earth’s seafloor. However, multibeam bathymetric data...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Bathymetric data
Building codes
coding octree
connected component labeling
Data analysis
different types of outliers
Echo sounding
Echoes
Encoding
Geodesy
Geomagnetism
Methods
Multibeam bathymetric point cloud
Ocean floor
Octree coding
Octrees
outlier removal
Outliers (statistics)
Point cloud compression
Reliability
Removal
Sea floor
Surveying
System effectiveness
Three-dimensional displays
Title An Intelligent Detection Method for Different Types of Outliers in Multibeam Bathymetric Point Cloud
URI https://ieeexplore.ieee.org/document/9903057
https://www.proquest.com/docview/2726107252
Volume 60
WOSCitedRecordID wos000870339900009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0644
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014517
  issn: 0196-2892
  databaseCode: RIE
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0BKlJ7gPJRdfmofOBUEUicOI6PW2ApByhqQeIWOfZEWmk3qdgsEv-esddERSCk3qJoHEV5jmeeZzwP4EAqFLVAGSVKx1HGESNdpTZSsS7qlO4Zrb3YhLy6Ku7u1PUSHPZnYRDRF5_hkbv0uXzbmrnbKjumlZOmp1yGZSnzxVmtPmOQiSQcjc4jIhE8ZDCTWB3fnP_-Q0yQ86OUE4HPshc-yIuqvFqJvXsZrf_fi32GtRBGsuEC9w1YwmYTPv3TXHATVn1xp5ltgR027KJvvdmxU-x8AVbDLr1-NKPAlZ0GpZSOOWo6Y23Nfs27iVPKZmOydIWHFeop-0Ex4-PUCXEZdt2OacDJpJ3bbbgdnd2c_IyCukJkyMV3keUmFlxnmRE2yata8QprS-zIyiKtXMdQ5MIUlTaqRtSqEEYQN0sqLnSiszT9AitN2-BXYDnxRisSXeWaCFeREcQiFeQaZS7ICdcDiJ-_d2lC63GngDEpPQWJVekgKh1EZYBoAN_7IX8XfTfeM95ymPSGAY4B7D2DWoY_c1ZySZwxllzwnbdH7cJH9-zFNsserHT3c9yHD-ahG8_uv_lJ9wQTh9Qv
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB3xUVQ40BaK2EJbH3qqGkgcO4mPfJSCClvULhK3yLEn0kpLgtgsEv--Y6-JWlFV4hZFYyXKczzzPON5AJ9yhbKWmEeJ0nEkOGKkq9RGKtZFndI9o7UXm8iHw-L6Wl0uwJf-LAwi-uIz3HOXPpdvWzNzW2X7tHLS9MwXYVkKweP5aa0-ZyBkEg5HZxHRCB5ymEms9kfffv4iLsj5XsqJwgvxlxfysipP1mLvYE5ePe_VXsN6CCTZwRz5N7CAzQas_dFecANWfHmnmW6CPWjYWd98s2PH2PkSrIZdeAVpRqErOw5aKR1z5HTK2pr9mHUTp5XNxmTpSg8r1DfskKLGhxsnxWXYZTumAUeTdmbfwtXJ19HRaRT0FSJDTr6LLDex5FoII22SVbXiFdaW-JHNi7RyPUORS1NU2qgaUatCGknsLKm41IkWaboFS03b4DawjJijlYmuMk2UqxAEskwlOcc8k-SG6wHEj9-7NKH5uNPAmJSehMSqdBCVDqIyQDSAz_2Q23nnjf8ZbzpMesMAxwB2H0Etw785LXlOrDHOueTv_j3qI7w8HV2cl-dnw-87sOqeM9902YWl7m6G7-GFue_G07sPfgL-BkZ913Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Intelligent+Detection+Method+for+Different+Types+of+Outliers+in+Multibeam+Bathymetric+Point+Cloud&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Yang%2C+Fanlin&rft.au=Xu%2C+Fangzheng&rft.au=Fan%2C+Miao&rft.au=Bu%2C+Xianhai&rft.date=2022&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=60&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1109%2FTGRS.2022.3209344&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2022_3209344
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon