A Survey on Network Embedding

Network embedding assigns nodes in a network to low-dimensional representations and effectively preserves the network structure. Recently, a significant amount of progresses have been made toward this emerging network analysis paradigm. In this survey, we focus on categorizing and then reviewing the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on knowledge and data engineering Jg. 31; H. 5; S. 833 - 852
Hauptverfasser: Cui, Peng, Wang, Xiao, Pei, Jian, Zhu, Wenwu
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.05.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1041-4347, 1558-2191
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Network embedding assigns nodes in a network to low-dimensional representations and effectively preserves the network structure. Recently, a significant amount of progresses have been made toward this emerging network analysis paradigm. In this survey, we focus on categorizing and then reviewing the current development on network embedding methods, and point out its future research directions. We first summarize the motivation of network embedding. We discuss the classical graph embedding algorithms and their relationship with network embedding. Afterwards and primarily, we provide a comprehensive overview of a large number of network embedding methods in a systematic manner, covering the structure- and property-preserving network embedding methods, the network embedding methods with side information, and the advanced information preserving network embedding methods. Moreover, several evaluation approaches for network embedding and some useful online resources, including the network data sets and softwares, are reviewed, too. Finally, we discuss the framework of exploiting these network embedding methods to build an effective system and point out some potential future directions.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1041-4347
1558-2191
DOI:10.1109/TKDE.2018.2849727