A Survey on Multi-Task Learning

Multi-Task Learning (MTL) is a learning paradigm in machine learning and its aim is to leverage useful information contained in multiple related tasks to help improve the generalization performance of all the tasks. In this paper, we give a survey for MTL from the perspective of algorithmic modeling...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on knowledge and data engineering Vol. 34; no. 12; pp. 5586 - 5609
Main Authors: Zhang, Yu, Yang, Qiang
Format: Journal Article
Language:English
Published: New York IEEE 01.12.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1041-4347, 1558-2191
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Multi-Task Learning (MTL) is a learning paradigm in machine learning and its aim is to leverage useful information contained in multiple related tasks to help improve the generalization performance of all the tasks. In this paper, we give a survey for MTL from the perspective of algorithmic modeling, applications and theoretical analyses. For algorithmic modeling, we give a definition of MTL and then classify different MTL algorithms into five categories, including feature learning approach, low-rank approach, task clustering approach, task relation learning approach and decomposition approach as well as discussing the characteristics of each approach. In order to improve the performance of learning tasks further, MTL can be combined with other learning paradigms including semi-supervised learning, active learning, unsupervised learning, reinforcement learning, multi-view learning and graphical models. When the number of tasks is large or the data dimensionality is high, we review online, parallel and distributed MTL models as well as dimensionality reduction and feature hashing to reveal their computational and storage advantages. Many real-world applications use MTL to boost their performance and we review representative works in this paper. Finally, we present theoretical analyses and discuss several future directions for MTL.
AbstractList Multi-Task Learning (MTL) is a learning paradigm in machine learning and its aim is to leverage useful information contained in multiple related tasks to help improve the generalization performance of all the tasks. In this paper, we give a survey for MTL from the perspective of algorithmic modeling, applications and theoretical analyses. For algorithmic modeling, we give a definition of MTL and then classify different MTL algorithms into five categories, including feature learning approach, low-rank approach, task clustering approach, task relation learning approach and decomposition approach as well as discussing the characteristics of each approach. In order to improve the performance of learning tasks further, MTL can be combined with other learning paradigms including semi-supervised learning, active learning, unsupervised learning, reinforcement learning, multi-view learning and graphical models. When the number of tasks is large or the data dimensionality is high, we review online, parallel and distributed MTL models as well as dimensionality reduction and feature hashing to reveal their computational and storage advantages. Many real-world applications use MTL to boost their performance and we review representative works in this paper. Finally, we present theoretical analyses and discuss several future directions for MTL.
Author Zhang, Yu
Yang, Qiang
Author_xml – sequence: 1
  givenname: Yu
  orcidid: 0000-0003-1100-4835
  surname: Zhang
  fullname: Zhang, Yu
  email: yu.zhang.ust@gmail.com
  organization: Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
– sequence: 2
  givenname: Qiang
  surname: Yang
  fullname: Yang, Qiang
  email: qyang@cse.ust.hk
  organization: Department of Computer Science and Engineering, Hong Kong University of Science and Technology, Hong Kong
BookMark eNp9kDtPwzAUhS1UJNrCD0AMRGJOuX4ktseqlIcoYqDMluPcoJTiFDup1H9PqlYMDEz3Duc7R_pGZOAbj4RcUphQCvp2-Xw3nzBgdMJBAgN-QoY0y1TKqKaD_gdBU8GFPCOjGFcAoKSiQ3I9Td66sMVd0vjkpVu3dbq08TNZoA2-9h_n5LSy64gXxzsm7_fz5ewxXbw-PM2mi9QxzdvU6SpXWKJyutTggGe8zIpcSV0468pCACIFWuVaFM4JWWiKGorMomYVZ5aPyc2hdxOa7w5ja1ZNF3w_aZjkgqssV6pP0UPKhSbGgJXZhPrLhp2hYPYezN6D2XswRw89I_8wrm5tWze-DbZe_0teHcgaEX-XNNeM5zn_AU29arQ
CODEN ITKEEH
CitedBy_id crossref_primary_10_1016_j_iswa_2025_200567
crossref_primary_10_1145_3665252_3665263
crossref_primary_10_1145_3664615
crossref_primary_10_3390_info15070381
crossref_primary_10_20965_jaciii_2024_p0029
crossref_primary_10_1016_j_eswa_2025_126966
crossref_primary_10_1016_j_jbi_2025_104872
crossref_primary_10_1109_TMI_2024_3362852
crossref_primary_10_1016_j_compbiomed_2024_108549
crossref_primary_10_1016_j_asoc_2025_113823
crossref_primary_10_1109_TASLP_2024_3353578
crossref_primary_10_1109_TGRS_2024_3506058
crossref_primary_10_1002_lpor_202200698
crossref_primary_10_1038_s43588_024_00662_z
crossref_primary_10_1142_S0219519425400743
crossref_primary_10_1177_10692509251337224
crossref_primary_10_3390_su16177259
crossref_primary_10_1109_JBHI_2023_3291433
crossref_primary_10_3390_app15179602
crossref_primary_10_1109_LRA_2025_3588784
crossref_primary_10_1016_j_jbi_2025_104881
crossref_primary_10_1016_j_asoc_2025_113834
crossref_primary_10_1016_j_comcom_2023_03_028
crossref_primary_10_1109_TGRS_2021_3099300
crossref_primary_10_1016_j_cmpb_2025_108918
crossref_primary_10_1109_ACCESS_2024_3376441
crossref_primary_10_1007_s10489_024_06023_7
crossref_primary_10_1016_j_eswa_2025_126972
crossref_primary_10_1016_j_eswa_2025_126987
crossref_primary_10_1109_TIM_2023_3250306
crossref_primary_10_1007_s10489_021_02930_1
crossref_primary_10_1109_TNNLS_2023_3306896
crossref_primary_10_3390_electronics12071631
crossref_primary_10_1007_s10115_025_02517_z
crossref_primary_10_1109_TPAMI_2023_3346386
crossref_primary_10_1088_2632_2153_ac37f7
crossref_primary_10_3390_s22103637
crossref_primary_10_3390_en18071783
crossref_primary_10_1007_s00521_023_08263_z
crossref_primary_10_1093_jamia_ocae061
crossref_primary_10_1109_TIM_2024_3449957
crossref_primary_10_1109_TCYB_2020_3036935
crossref_primary_10_1109_TKDE_2023_3305628
crossref_primary_10_1093_bib_bbae539
crossref_primary_10_1016_j_knosys_2024_112386
crossref_primary_10_1016_j_compmedimag_2025_102539
crossref_primary_10_1109_JSEN_2024_3352260
crossref_primary_10_1109_TVT_2023_3260466
crossref_primary_10_1109_TIV_2023_3256972
crossref_primary_10_1016_j_isprsjprs_2025_06_022
crossref_primary_10_1093_bib_bbad203
crossref_primary_10_1109_TGRS_2024_3487652
crossref_primary_10_1109_ACCESS_2024_3443148
crossref_primary_10_1002_mma_11217
crossref_primary_10_1109_JIOT_2025_3579524
crossref_primary_10_1016_j_ins_2025_122154
crossref_primary_10_2139_ssrn_5347645
crossref_primary_10_1109_TVCG_2024_3456142
crossref_primary_10_1016_j_bspc_2025_108395
crossref_primary_10_1109_ACCESS_2023_3303110
crossref_primary_10_1109_TNNLS_2022_3183081
crossref_primary_10_1016_j_autcon_2023_105184
crossref_primary_10_3390_e25040696
crossref_primary_10_1088_1361_6501_ad6892
crossref_primary_10_1109_LRA_2025_3564781
crossref_primary_10_1049_ipr2_70098
crossref_primary_10_3390_s25185620
crossref_primary_10_1002_we_2909
crossref_primary_10_3390_diagnostics15091177
crossref_primary_10_1007_s10845_025_02630_4
crossref_primary_10_1016_j_eswa_2023_122845
crossref_primary_10_1145_3664650
crossref_primary_10_1016_j_atmosenv_2023_120193
crossref_primary_10_1016_j_eswa_2025_128940
crossref_primary_10_3390_s23031083
crossref_primary_10_1002_rnc_8057
crossref_primary_10_3390_rs14143450
crossref_primary_10_1109_TPEL_2025_3565730
crossref_primary_10_3389_fpsyg_2021_652796
crossref_primary_10_1002_cjs_70022
crossref_primary_10_3390_s25010224
crossref_primary_10_3390_su151410816
crossref_primary_10_1017_asb_2025_10
crossref_primary_10_1145_3563947
crossref_primary_10_1002_bit_28757
crossref_primary_10_3390_rs15163934
crossref_primary_10_1109_TCOMM_2023_3238373
crossref_primary_10_1007_s00521_025_11603_w
crossref_primary_10_3389_fped_2023_1144952
crossref_primary_10_3390_jcm12237355
crossref_primary_10_1080_13658816_2024_2381146
crossref_primary_10_1145_3569480
crossref_primary_10_3390_s25134095
crossref_primary_10_1038_s41598_025_01893_4
crossref_primary_10_1145_3640468
crossref_primary_10_1109_TCBB_2022_3220902
crossref_primary_10_1109_TWC_2022_3231088
crossref_primary_10_1007_s10664_024_10466_4
crossref_primary_10_1007_s10845_024_02348_9
crossref_primary_10_1186_s12859_022_05031_z
crossref_primary_10_1109_JIOT_2022_3228292
crossref_primary_10_1109_TGRS_2024_3511618
crossref_primary_10_3390_en18061531
crossref_primary_10_1109_JIOT_2024_3505553
crossref_primary_10_1109_TG_2024_3436871
crossref_primary_10_1109_ACCESS_2024_3490772
crossref_primary_10_3390_app15010057
crossref_primary_10_1007_s10489_024_05828_w
crossref_primary_10_1007_s42243_025_01530_4
crossref_primary_10_1186_s12911_024_02814_7
crossref_primary_10_3934_mina_2025004
crossref_primary_10_1109_TCSVT_2024_3451294
crossref_primary_10_1016_j_knosys_2024_112187
crossref_primary_10_1109_TIM_2023_3273673
crossref_primary_10_1016_j_isprsjprs_2023_10_022
crossref_primary_10_32604_cmes_2024_048071
crossref_primary_10_1002_sres_3139
crossref_primary_10_1109_JIOT_2025_3559731
crossref_primary_10_3390_math12040534
crossref_primary_10_1109_TMI_2023_3287361
crossref_primary_10_1016_j_eswa_2025_128971
crossref_primary_10_1007_s13042_023_01877_8
crossref_primary_10_1287_ijds_2024_0029
crossref_primary_10_1109_TASLPRO_2025_3539018
crossref_primary_10_1007_s11227_024_06422_0
crossref_primary_10_3390_app15158733
crossref_primary_10_1145_3639816
crossref_primary_10_1016_j_energy_2024_133960
crossref_primary_10_1109_TIM_2024_3379372
crossref_primary_10_1080_03461238_2025_2478439
crossref_primary_10_1155_atr_9961530
crossref_primary_10_1007_s10462_024_10929_6
crossref_primary_10_3390_s24247975
crossref_primary_10_1080_00207543_2023_2275635
crossref_primary_10_1016_j_neucom_2024_129076
crossref_primary_10_1109_TKDE_2020_2999489
crossref_primary_10_1109_ACCESS_2025_3601992
crossref_primary_10_1109_TPAMI_2023_3283780
crossref_primary_10_1109_TSIPN_2024_3352236
crossref_primary_10_1109_TCSVT_2024_3514740
crossref_primary_10_3390_rs17142442
crossref_primary_10_1109_TIM_2023_3276529
crossref_primary_10_3390_electronics14153009
crossref_primary_10_1007_s11263_024_02089_5
crossref_primary_10_1016_j_compbiomed_2025_110050
crossref_primary_10_4000_ijcol_553
crossref_primary_10_3389_fpls_2023_1048016
crossref_primary_10_3390_app112411808
crossref_primary_10_1016_j_jfca_2025_108160
crossref_primary_10_1016_j_ymssp_2024_112299
crossref_primary_10_1016_j_jmapro_2024_08_036
crossref_primary_10_1109_TCSS_2024_3443275
crossref_primary_10_1016_j_patcog_2024_110599
crossref_primary_10_1038_s41565_025_01975_4
crossref_primary_10_3390_s24165343
crossref_primary_10_1016_j_commatsci_2024_112897
crossref_primary_10_1016_j_procs_2025_05_039
crossref_primary_10_1016_j_engappai_2023_107714
crossref_primary_10_1111_bph_16140
crossref_primary_10_1016_j_modpat_2024_100691
crossref_primary_10_1093_nsr_nwaf231
crossref_primary_10_1016_j_eswa_2025_126583
crossref_primary_10_3390_ijms26062510
crossref_primary_10_1145_3511896
crossref_primary_10_1016_j_patcog_2024_111213
crossref_primary_10_1109_TASE_2024_3375300
crossref_primary_10_1016_j_autcon_2024_105292
crossref_primary_10_3390_app15158740
crossref_primary_10_1016_j_bspc_2025_107678
crossref_primary_10_1371_journal_pone_0258639
crossref_primary_10_1007_s10115_024_02168_6
crossref_primary_10_1109_ACCESS_2024_3509918
crossref_primary_10_1109_TASE_2025_3551593
crossref_primary_10_1117_1_JEI_33_1_013048
crossref_primary_10_3390_rs16071193
crossref_primary_10_1016_j_optlaseng_2023_107923
crossref_primary_10_3390_app13116802
crossref_primary_10_1145_3656170
crossref_primary_10_1145_3678181
crossref_primary_10_3390_math13050824
crossref_primary_10_1016_j_jbi_2023_104434
crossref_primary_10_3390_rs15061487
crossref_primary_10_1016_j_mtcomm_2025_113054
crossref_primary_10_1016_j_camwa_2025_01_007
crossref_primary_10_1109_TKDE_2022_3149815
crossref_primary_10_1016_j_vehcom_2024_100760
crossref_primary_10_1038_s42256_025_01109_4
crossref_primary_10_3389_fnins_2025_1557287
crossref_primary_10_1007_s00607_025_01499_8
crossref_primary_10_1007_s11042_024_20413_6
crossref_primary_10_3390_math11224639
crossref_primary_10_1109_TBME_2022_3175670
crossref_primary_10_1109_TED_2023_3327973
crossref_primary_10_1016_j_neunet_2024_107031
crossref_primary_10_1016_j_scitotenv_2024_173273
crossref_primary_10_1038_s43247_025_02502_y
crossref_primary_10_1016_j_solener_2025_113336
crossref_primary_10_1109_ACCESS_2024_3480358
crossref_primary_10_1111_exsy_70127
crossref_primary_10_1109_JSEN_2024_3454646
crossref_primary_10_1007_s00521_023_08461_9
crossref_primary_10_3390_s24175552
crossref_primary_10_1007_s10207_025_00992_7
crossref_primary_10_1007_s11263_024_02304_3
crossref_primary_10_1109_TNNLS_2024_3416191
crossref_primary_10_1016_j_compbiomed_2025_110003
crossref_primary_10_3390_ijgi14050189
crossref_primary_10_1016_j_patcog_2024_110794
crossref_primary_10_1109_ACCESS_2023_3294979
crossref_primary_10_1007_s10589_023_00475_2
crossref_primary_10_3390_electronics14071262
crossref_primary_10_1145_3731596
crossref_primary_10_3390_molecules26226959
crossref_primary_10_1016_j_knosys_2025_114047
crossref_primary_10_1109_TDSC_2023_3247869
crossref_primary_10_3390_s23249729
crossref_primary_10_1016_j_compstruct_2023_117555
crossref_primary_10_1002_jcc_70157
crossref_primary_10_1109_TGRS_2023_3344103
crossref_primary_10_1016_j_swevo_2025_101931
crossref_primary_10_1109_ACCESS_2024_3471613
crossref_primary_10_1109_JLT_2024_3401244
crossref_primary_10_1093_nsr_nwx105
crossref_primary_10_1016_j_cviu_2024_104138
crossref_primary_10_1109_TAFE_2024_3485949
crossref_primary_10_1109_TPAMI_2024_3357847
crossref_primary_10_1109_TNNLS_2022_3225179
crossref_primary_10_1109_TGRS_2024_3356008
crossref_primary_10_1109_TMC_2024_3357874
crossref_primary_10_1109_TNNLS_2024_3475216
crossref_primary_10_1080_02626667_2025_2561163
crossref_primary_10_1016_j_colsurfa_2024_134133
crossref_primary_10_1088_2057_1976_ada6bd
crossref_primary_10_1109_ACCESS_2022_3151670
crossref_primary_10_1016_j_ins_2025_122112
crossref_primary_10_3389_frobt_2023_1283322
crossref_primary_10_3390_f14091697
crossref_primary_10_1016_j_compeleceng_2025_110640
crossref_primary_10_1109_TSUSC_2024_3350040
crossref_primary_10_1016_j_engstruct_2024_118171
crossref_primary_10_1109_TII_2024_3413352
crossref_primary_10_1016_j_neunet_2025_107315
crossref_primary_10_1177_18758967251353020
crossref_primary_10_1016_j_eswa_2025_127002
crossref_primary_10_3390_s24113282
crossref_primary_10_3390_make5030062
crossref_primary_10_1109_TMM_2022_3187257
crossref_primary_10_3348_jksr_2022_0155
crossref_primary_10_3390_aerospace9100603
crossref_primary_10_1109_TVT_2024_3454208
crossref_primary_10_1109_TMC_2025_3547339
crossref_primary_10_1016_j_vetpar_2025_110525
crossref_primary_10_1049_cit2_12197
crossref_primary_10_1080_10618600_2023_2252023
crossref_primary_10_1109_TBME_2024_3365131
crossref_primary_10_1109_TMC_2023_3344125
crossref_primary_10_1109_TVT_2024_3511697
crossref_primary_10_1177_00368504241292196
crossref_primary_10_3390_w16152156
crossref_primary_10_3390_rs16203891
crossref_primary_10_1016_j_patcog_2024_110424
crossref_primary_10_1016_j_asoc_2025_113044
crossref_primary_10_1016_j_neucom_2024_127736
crossref_primary_10_1177_03611981231155418
crossref_primary_10_1287_mnsc_2023_00309
crossref_primary_10_1109_TIE_2024_3379664
crossref_primary_10_1016_j_trc_2025_105146
crossref_primary_10_1007_s00521_024_10767_1
crossref_primary_10_1145_3543870
crossref_primary_10_1016_j_jmapro_2023_08_030
crossref_primary_10_1109_TIV_2024_3426970
crossref_primary_10_3390_app15010409
crossref_primary_10_1213_ANE_0000000000007278
crossref_primary_10_1109_TGRS_2021_3136159
crossref_primary_10_1007_s10489_024_05548_1
crossref_primary_10_1016_j_neunet_2024_106513
crossref_primary_10_1016_j_measurement_2025_118770
crossref_primary_10_1088_1361_6501_ad0a21
crossref_primary_10_1109_ACCESS_2024_3510746
crossref_primary_10_1016_j_compbiomed_2022_106496
crossref_primary_10_1016_j_iot_2024_101406
crossref_primary_10_3389_fpubh_2021_793801
crossref_primary_10_1016_j_jenvman_2023_118817
crossref_primary_10_1109_TAI_2021_3104789
crossref_primary_10_1016_j_knosys_2024_112701
crossref_primary_10_1109_TNNLS_2022_3169347
crossref_primary_10_1016_j_optlastec_2024_110655
crossref_primary_10_1038_s41591_025_03916_z
crossref_primary_10_1016_j_patcog_2023_109592
crossref_primary_10_1109_ACCESS_2025_3578009
crossref_primary_10_1038_s41598_024_52463_z
crossref_primary_10_1016_j_neunet_2024_106528
crossref_primary_10_1007_s10589_024_00607_2
crossref_primary_10_1002_aisy_202300270
crossref_primary_10_1088_1402_4896_ada20a
crossref_primary_10_1088_1741_4326_ade16d
crossref_primary_10_1145_3722103
crossref_primary_10_1016_j_jbi_2024_104711
crossref_primary_10_1145_3725854
crossref_primary_10_1109_ACCESS_2024_3518483
crossref_primary_10_1145_3656479
crossref_primary_10_1109_TSP_2021_3122303
crossref_primary_10_1109_TASLP_2022_3214763
crossref_primary_10_3390_rs16183522
crossref_primary_10_1016_j_tre_2024_103900
crossref_primary_10_1016_j_neucom_2024_127533
crossref_primary_10_1111_risa_70066
crossref_primary_10_1088_1741_2552_ad731b
crossref_primary_10_1016_j_knosys_2024_111672
crossref_primary_10_1109_TIV_2023_3319546
crossref_primary_10_1109_JBHI_2021_3119519
crossref_primary_10_26599_BDMA_2024_9020049
crossref_primary_10_1145_3571072
crossref_primary_10_1016_j_autcon_2025_106306
crossref_primary_10_1016_j_neucom_2025_131586
crossref_primary_10_1109_TBME_2024_3523044
crossref_primary_10_1016_j_conengprac_2025_106579
crossref_primary_10_1109_TII_2024_3441652
crossref_primary_10_1016_j_csl_2023_101606
crossref_primary_10_32604_cmc_2023_046711
crossref_primary_10_1016_j_aei_2024_102565
crossref_primary_10_1109_JBHI_2024_3454097
crossref_primary_10_3390_app15042216
crossref_primary_10_1109_ACCESS_2024_3383442
crossref_primary_10_1016_j_neucom_2025_130008
crossref_primary_10_1109_TAFFC_2025_3555406
crossref_primary_10_1109_TMC_2025_3568470
crossref_primary_10_1109_TMI_2022_3156614
crossref_primary_10_1007_s00034_025_03127_4
crossref_primary_10_1016_j_eswa_2024_125978
crossref_primary_10_1016_j_neucom_2025_131333
crossref_primary_10_1109_TPAMI_2023_3292075
crossref_primary_10_1109_TIM_2022_3173636
crossref_primary_10_1007_s11768_023_00165_8
crossref_primary_10_3390_electronics13112115
crossref_primary_10_1016_j_knosys_2025_113911
crossref_primary_10_3389_fpls_2024_1340884
crossref_primary_10_1016_j_ese_2025_100592
crossref_primary_10_1016_j_ins_2024_120147
crossref_primary_10_3390_rs16020215
crossref_primary_10_1007_s10010_025_00875_2
crossref_primary_10_1016_j_jss_2025_112629
crossref_primary_10_1016_j_knosys_2023_111133
crossref_primary_10_1016_j_jvcir_2025_104484
crossref_primary_10_1016_j_inffus_2025_103657
crossref_primary_10_3390_s23239536
crossref_primary_10_1109_OJCOMS_2025_3534626
crossref_primary_10_3390_rs17152688
crossref_primary_10_1007_s10462_024_10855_7
crossref_primary_10_1016_j_ijfatigue_2023_107864
crossref_primary_10_1145_3501807
crossref_primary_10_1007_s10287_022_00425_z
crossref_primary_10_1088_1741_2552_ad9956
crossref_primary_10_1109_JBHI_2022_3181791
crossref_primary_10_1088_1757_899X_1261_1_012018
crossref_primary_10_1016_j_omega_2024_103073
crossref_primary_10_1109_TPAMI_2020_3015859
crossref_primary_10_1109_TKDE_2024_3366333
crossref_primary_10_3390_rs14215624
crossref_primary_10_1007_s10462_024_10846_8
crossref_primary_10_1145_3663363
crossref_primary_10_1109_TMC_2024_3466227
crossref_primary_10_1109_TAI_2024_3400750
crossref_primary_10_3390_app142210540
crossref_primary_10_1016_j_ijforecast_2025_01_005
crossref_primary_10_1016_j_ymssp_2024_111418
crossref_primary_10_3390_s23218894
crossref_primary_10_7554_eLife_65554
crossref_primary_10_1287_ijds_2023_0022
crossref_primary_10_3389_fneur_2025_1640428
crossref_primary_10_1109_TCCN_2025_3558992
crossref_primary_10_3390_electronics13142835
crossref_primary_10_1109_TCYB_2024_3422430
crossref_primary_10_1109_TCSVT_2025_3544680
crossref_primary_10_1016_j_engappai_2023_107189
crossref_primary_10_1016_j_neucom_2025_130217
crossref_primary_10_1109_TAFFC_2022_3170428
crossref_primary_10_1016_j_aeue_2025_155915
crossref_primary_10_1109_TNSE_2021_3056655
crossref_primary_10_1109_TAFFC_2022_3205170
crossref_primary_10_1016_j_ins_2023_119015
crossref_primary_10_69709_COConnect_2024_097213
crossref_primary_10_1007_s00521_024_10436_3
crossref_primary_10_1177_19462174251330980
crossref_primary_10_1287_ijds_2023_0029
crossref_primary_10_1109_ACCESS_2025_3574982
crossref_primary_10_1016_j_knosys_2024_112570
crossref_primary_10_1109_TII_2022_3170594
crossref_primary_10_3390_s25134115
crossref_primary_10_1016_j_nlp_2023_100048
crossref_primary_10_1016_j_compbiomed_2023_107450
crossref_primary_10_1007_s11222_024_10550_1
crossref_primary_10_3390_s22218452
crossref_primary_10_1016_j_rse_2023_113924
crossref_primary_10_1109_JSTARS_2025_3567472
crossref_primary_10_1038_s41467_025_56062_y
crossref_primary_10_1016_j_compind_2024_104131
crossref_primary_10_1016_j_lwt_2024_116436
crossref_primary_10_1016_j_knosys_2025_113704
crossref_primary_10_1007_s11370_023_00489_z
crossref_primary_10_1109_TASLPRO_2025_3590289
crossref_primary_10_1109_TMM_2022_3164798
crossref_primary_10_1111_cgf_14795
crossref_primary_10_1109_COMST_2024_3503680
crossref_primary_10_1007_s13042_023_01795_9
crossref_primary_10_1109_TIFS_2025_3592544
crossref_primary_10_1177_02783649241227448
crossref_primary_10_1016_j_ast_2025_110241
crossref_primary_10_1016_j_ast_2025_110483
crossref_primary_10_1109_TPAMI_2022_3218605
crossref_primary_10_1016_j_compbiomed_2025_110846
crossref_primary_10_3390_math11183821
crossref_primary_10_1021_acs_analchem_5c03263
crossref_primary_10_1109_TVT_2023_3344127
crossref_primary_10_1109_ACCESS_2024_3449072
crossref_primary_10_1016_j_measurement_2025_118139
crossref_primary_10_1016_j_cherd_2023_05_016
crossref_primary_10_1145_3749458
crossref_primary_10_1109_TKDE_2024_3392836
crossref_primary_10_1177_14759217231206178
crossref_primary_10_1109_ACCESS_2023_3312993
crossref_primary_10_1109_TGRS_2025_3528333
crossref_primary_10_1109_TASLP_2022_3221042
crossref_primary_10_1111_tgis_70092
crossref_primary_10_1109_TIM_2025_3575181
crossref_primary_10_3389_fpsyg_2025_1575174
crossref_primary_10_1145_3609483
crossref_primary_10_1145_3530990
crossref_primary_10_1109_ACCESS_2024_3512544
crossref_primary_10_1109_TAI_2024_3477457
crossref_primary_10_1016_j_eneco_2025_108226
crossref_primary_10_3390_agronomy15040793
crossref_primary_10_1109_TII_2022_3190394
crossref_primary_10_3390_s24020681
crossref_primary_10_1109_JSEN_2025_3588616
crossref_primary_10_1109_TVCG_2023_3282802
crossref_primary_10_1016_j_ins_2024_120564
crossref_primary_10_1109_ACCESS_2025_3568002
crossref_primary_10_1109_TWC_2025_3543176
crossref_primary_10_1016_j_compstruc_2025_107840
crossref_primary_10_1088_2632_2153_ac4f3f
crossref_primary_10_1109_JSEN_2025_3563154
crossref_primary_10_3390_app13116784
crossref_primary_10_1016_j_cie_2024_110763
crossref_primary_10_1109_TCSS_2024_3475511
crossref_primary_10_1109_THMS_2022_3176213
crossref_primary_10_1088_1361_6579_ac9d7f
crossref_primary_10_1109_TCSVT_2024_3375344
crossref_primary_10_1145_3514252
crossref_primary_10_1109_TMI_2023_3323540
crossref_primary_10_1371_journal_pone_0302958
crossref_primary_10_1109_TAFFC_2022_3210958
crossref_primary_10_1109_TMI_2022_3218720
crossref_primary_10_1016_j_array_2025_100444
crossref_primary_10_1038_s41467_024_53101_y
crossref_primary_10_1016_j_jmsy_2024_04_021
crossref_primary_10_1038_s41598_023_45466_9
crossref_primary_10_1016_j_inffus_2023_102135
crossref_primary_10_1109_TETCI_2024_3359082
crossref_primary_10_1016_j_neucom_2025_130638
crossref_primary_10_1109_TITS_2020_3019390
crossref_primary_10_1016_j_neucom_2025_129898
crossref_primary_10_1109_TASLP_2021_3060813
crossref_primary_10_1016_j_engappai_2023_106276
crossref_primary_10_1109_ACCESS_2022_3181750
crossref_primary_10_1016_j_rse_2023_113962
crossref_primary_10_2196_60003
crossref_primary_10_1007_s41060_024_00574_1
crossref_primary_10_1109_TPAMI_2021_3054719
crossref_primary_10_1016_j_mineng_2024_109148
crossref_primary_10_1016_j_neucom_2024_129105
crossref_primary_10_1038_s42256_024_00966_9
crossref_primary_10_1002_aisy_202400204
crossref_primary_10_1016_j_neucom_2025_130865
crossref_primary_10_1016_j_aei_2024_103052
crossref_primary_10_1109_JSEN_2025_3541212
crossref_primary_10_1007_s10844_023_00787_z
crossref_primary_10_1016_j_aej_2025_03_115
crossref_primary_10_1088_1361_6501_adeacf
crossref_primary_10_1109_TNNLS_2023_3280085
crossref_primary_10_1007_s41060_024_00697_5
crossref_primary_10_1016_j_neucom_2024_128260
crossref_primary_10_1109_TMC_2022_3207164
crossref_primary_10_1007_s10115_025_02460_z
crossref_primary_10_1109_TGRS_2025_3550867
crossref_primary_10_1109_TVCG_2022_3167896
crossref_primary_10_1016_j_eswa_2025_126855
crossref_primary_10_1109_TCOMM_2024_3381671
crossref_primary_10_1007_s11263_025_02502_7
crossref_primary_10_1016_j_engstruct_2024_118079
crossref_primary_10_1109_ACCESS_2025_3588506
crossref_primary_10_1007_s10462_024_10817_z
crossref_primary_10_1016_j_inffus_2023_101891
crossref_primary_10_3390_machines13060475
crossref_primary_10_1016_j_cmpb_2023_107399
crossref_primary_10_1007_s11227_025_07643_7
crossref_primary_10_1038_s41598_025_10650_6
crossref_primary_10_1007_s10489_025_06270_2
crossref_primary_10_1016_j_ijmedinf_2024_105567
crossref_primary_10_1016_j_asoc_2024_112568
crossref_primary_10_3390_electronics13142689
crossref_primary_10_1016_j_compmedimag_2025_102646
crossref_primary_10_1190_geo2024_0348_1
crossref_primary_10_5406_21521123_62_2_03
crossref_primary_10_1117_1_OE_63_11_111812
crossref_primary_10_1002_mp_17266
crossref_primary_10_1016_j_compchemeng_2025_109253
crossref_primary_10_1080_20539320_2022_2150470
crossref_primary_10_1007_s00170_022_10115_4
crossref_primary_10_3390_math11173751
crossref_primary_10_1109_ACCESS_2022_3175311
crossref_primary_10_1016_j_eswa_2023_119975
crossref_primary_10_1007_s10114_025_3362_8
crossref_primary_10_1038_s41598_025_85859_6
crossref_primary_10_1016_j_bspc_2023_105615
crossref_primary_10_1016_j_neucom_2024_129136
crossref_primary_10_1016_j_bspc_2024_107081
crossref_primary_10_1038_s40494_025_01949_8
crossref_primary_10_1080_01621459_2021_1987251
crossref_primary_10_1109_LSP_2023_3336570
crossref_primary_10_1109_TNNLS_2023_3330879
crossref_primary_10_1109_TITS_2023_3309600
crossref_primary_10_1016_j_future_2025_107798
crossref_primary_10_1109_TCSS_2024_3442238
crossref_primary_10_1016_j_artint_2024_104184
crossref_primary_10_1109_ACCESS_2025_3566719
crossref_primary_10_1109_TGRS_2024_3497338
crossref_primary_10_1007_s10796_023_10372_y
crossref_primary_10_1016_j_physleta_2025_130516
crossref_primary_10_1016_j_engappai_2024_107936
crossref_primary_10_1016_j_eswa_2024_124189
crossref_primary_10_1145_3665868
crossref_primary_10_1109_JSTSP_2023_3267263
crossref_primary_10_1016_j_ins_2025_122060
crossref_primary_10_1038_s41598_025_98111_y
crossref_primary_10_3390_s24237463
crossref_primary_10_1109_ACCESS_2022_3147495
crossref_primary_10_1088_1361_6560_acb481
crossref_primary_10_3390_math10234525
crossref_primary_10_1007_s10489_024_05805_3
crossref_primary_10_2118_223950_PA
crossref_primary_10_3390_jcp5020029
crossref_primary_10_3390_jpm13030413
crossref_primary_10_1016_j_cmpb_2025_108830
crossref_primary_10_1109_JBHI_2025_3536030
crossref_primary_10_1016_j_apsb_2025_09_022
crossref_primary_10_1109_TKDE_2021_3124599
crossref_primary_10_1016_j_cmpb_2025_108835
crossref_primary_10_1109_TAFFC_2025_3537799
crossref_primary_10_1016_j_neucom_2024_129163
crossref_primary_10_1016_j_psep_2023_10_015
crossref_primary_10_1007_s40747_023_01221_1
crossref_primary_10_1177_03611981211016852
crossref_primary_10_3390_rs15194752
crossref_primary_10_1109_TIFS_2022_3186803
crossref_primary_10_1016_j_bspc_2023_105665
crossref_primary_10_1007_s11042_023_14333_0
crossref_primary_10_1145_3728467
crossref_primary_10_1007_s11042_024_20175_1
crossref_primary_10_1111_mice_13224
crossref_primary_10_1109_LRA_2024_3502061
crossref_primary_10_1109_JIOT_2024_3371978
crossref_primary_10_1051_wujns_2024292134
crossref_primary_10_1093_bib_bbad523
crossref_primary_10_1016_j_media_2025_103480
crossref_primary_10_1007_s11633_024_1523_3
crossref_primary_10_1109_TCE_2024_3357480
crossref_primary_10_1109_ACCESS_2024_3434513
crossref_primary_10_1109_TEMC_2024_3472031
crossref_primary_10_1109_TETCI_2024_3485704
crossref_primary_10_1016_j_drudis_2025_104366
crossref_primary_10_1016_j_swevo_2025_102084
crossref_primary_10_1109_JIOT_2023_3317639
crossref_primary_10_1287_isre_2022_0358
crossref_primary_10_1109_TII_2024_3366946
crossref_primary_10_1177_09544070251364016
crossref_primary_10_3390_math12111733
crossref_primary_10_3390_app142310821
crossref_primary_10_1097_TA_0000000000004624
crossref_primary_10_1109_COMST_2024_3443193
crossref_primary_10_1016_j_est_2025_116002
crossref_primary_10_1145_3639930
crossref_primary_10_1016_j_cja_2025_103757
crossref_primary_10_1016_j_egyai_2025_100585
crossref_primary_10_1016_j_rse_2023_113580
crossref_primary_10_1109_TKDE_2024_3372462
crossref_primary_10_1080_1206212X_2025_2520496
crossref_primary_10_1016_j_knosys_2025_114109
crossref_primary_10_1109_JAS_2023_123618
crossref_primary_10_1016_j_engappai_2025_110107
crossref_primary_10_1109_JPROC_2023_3273517
crossref_primary_10_1109_TPAMI_2021_3057446
crossref_primary_10_1007_s11227_025_07297_5
crossref_primary_10_1016_j_aei_2025_103185
crossref_primary_10_1109_ACCESS_2025_3564115
crossref_primary_10_1016_j_jfranklin_2023_04_024
crossref_primary_10_1007_s11704_022_1437_6
crossref_primary_10_1016_j_knosys_2025_113249
crossref_primary_10_1109_JBHI_2022_3204776
crossref_primary_10_1016_j_optlaseng_2024_108177
crossref_primary_10_1016_j_eswa_2023_122773
crossref_primary_10_1109_ACCESS_2024_3525000
crossref_primary_10_1016_j_neuroimage_2024_120695
crossref_primary_10_1016_j_eng_2025_08_008
crossref_primary_10_1029_2022GL102283
crossref_primary_10_1007_s11257_022_09332_z
crossref_primary_10_1016_j_ins_2023_119908
crossref_primary_10_1109_TAFFC_2024_3404243
crossref_primary_10_1016_j_energy_2024_132976
crossref_primary_10_1109_TEVC_2021_3139437
crossref_primary_10_1016_j_engappai_2025_110122
crossref_primary_10_1109_TMM_2022_3147664
crossref_primary_10_3390_s23249806
crossref_primary_10_1007_s00376_024_3222_y
crossref_primary_10_1016_j_inffus_2023_03_015
crossref_primary_10_1016_j_psep_2023_11_046
crossref_primary_10_1109_TCCN_2023_3328986
crossref_primary_10_1001_jamanetworkopen_2023_36196
crossref_primary_10_1109_LRA_2024_3440093
crossref_primary_10_1109_TETC_2024_3390811
crossref_primary_10_1109_TGRS_2021_3075622
crossref_primary_10_3389_fnins_2023_1158280
crossref_primary_10_1016_j_eswa_2024_126187
crossref_primary_10_1016_j_neunet_2024_106234
crossref_primary_10_1038_s41698_024_00700_z
crossref_primary_10_1109_TAFFC_2023_3282410
crossref_primary_10_1002_lary_30516
crossref_primary_10_1103_PhysRevLett_134_177301
crossref_primary_10_1016_j_jisa_2023_103555
crossref_primary_10_1002_aisy_202300318
crossref_primary_10_1016_j_dsp_2025_105168
crossref_primary_10_1002_wics_70021
crossref_primary_10_1061_JMENEA_MEENG_6699
crossref_primary_10_1109_ACCESS_2023_3258975
crossref_primary_10_1109_JSEN_2024_3390231
crossref_primary_10_1080_0305215X_2024_2434201
crossref_primary_10_1007_s10489_023_04917_6
crossref_primary_10_1007_s00371_023_02962_3
crossref_primary_10_1109_JSYST_2023_3263865
crossref_primary_10_1109_TPWRS_2022_3155865
crossref_primary_10_1002_aisy_202400922
crossref_primary_10_1088_1741_4326_ade3ed
crossref_primary_10_1109_TGRS_2025_3543270
crossref_primary_10_1287_ijoc_2023_0366
crossref_primary_10_1109_LSP_2022_3159402
crossref_primary_10_1016_j_neunet_2024_106292
crossref_primary_10_1016_j_apenergy_2025_125851
crossref_primary_10_1109_LCOMM_2021_3136508
crossref_primary_10_1109_ACCESS_2024_3404990
crossref_primary_10_1111_exsy_70017
crossref_primary_10_1007_s41019_025_00303_z
crossref_primary_10_1109_TITS_2024_3411638
crossref_primary_10_1016_j_knosys_2025_114384
crossref_primary_10_1109_TGRS_2022_3169703
crossref_primary_10_1109_LWC_2022_3163810
crossref_primary_10_1016_j_joi_2024_101607
crossref_primary_10_1109_TIM_2022_3225056
crossref_primary_10_1038_s41598_023_29230_7
crossref_primary_10_3390_su16062475
crossref_primary_10_1109_TIM_2025_3548240
crossref_primary_10_3390_rs13163083
crossref_primary_10_1016_j_applthermaleng_2025_128005
crossref_primary_10_1088_1742_5468_adf296
crossref_primary_10_1007_s00202_024_02327_6
crossref_primary_10_1109_TBME_2024_3402677
crossref_primary_10_1016_j_cja_2024_10_019
crossref_primary_10_1016_j_renene_2025_123011
crossref_primary_10_1049_enc2_12125
crossref_primary_10_1109_TMM_2024_3390148
crossref_primary_10_1109_TKDE_2024_3351732
crossref_primary_10_1109_TSE_2023_3292399
crossref_primary_10_1007_s10579_025_09827_2
crossref_primary_10_1088_1361_6501_adc473
crossref_primary_10_3233_SW_222991
crossref_primary_10_1109_MCI_2022_3222049
crossref_primary_10_1109_TSP_2025_3588910
crossref_primary_10_1007_s11042_025_21046_z
crossref_primary_10_1038_s41598_025_97262_2
crossref_primary_10_1016_j_bspc_2025_108441
crossref_primary_10_1109_TPAMI_2025_3588685
crossref_primary_10_1016_j_compind_2023_103978
crossref_primary_10_1109_TMI_2022_3223405
crossref_primary_10_3389_fnins_2025_1606038
crossref_primary_10_3390_smartcities7050095
crossref_primary_10_1007_s44336_024_00004_7
crossref_primary_10_1109_TAES_2023_3253085
crossref_primary_10_1371_journal_pone_0327663
crossref_primary_10_1007_s41066_021_00285_z
crossref_primary_10_1016_j_atmosenv_2024_120775
crossref_primary_10_1109_TKDE_2024_3419449
crossref_primary_10_1016_j_rse_2025_114964
crossref_primary_10_1109_TKDE_2024_3385712
crossref_primary_10_1016_j_bspc_2023_105081
crossref_primary_10_1016_j_inffus_2024_102358
crossref_primary_10_1109_ACCESS_2025_3556587
crossref_primary_10_3390_jimaging8110293
crossref_primary_10_1002_aisy_202401093
crossref_primary_10_1109_TMM_2022_3233245
crossref_primary_10_1109_TIM_2023_3267520
crossref_primary_10_1016_j_neucom_2024_128701
crossref_primary_10_1109_TMC_2025_3559676
crossref_primary_10_4018_JOEUC_379722
crossref_primary_10_1016_j_jad_2025_01_136
crossref_primary_10_1016_j_knosys_2023_111236
crossref_primary_10_1109_ACCESS_2025_3534798
crossref_primary_10_1016_j_eswa_2025_129671
crossref_primary_10_1016_j_aquaculture_2025_743001
crossref_primary_10_1016_j_eswa_2025_128584
crossref_primary_10_1038_s41524_025_01554_0
crossref_primary_10_1145_3723349
crossref_primary_10_1109_LSENS_2023_3266430
crossref_primary_10_1109_TCYB_2020_3017736
crossref_primary_10_1109_TGRS_2023_3328339
crossref_primary_10_1109_TVCG_2023_3337868
crossref_primary_10_1016_j_ecoinf_2024_102784
crossref_primary_10_1016_j_slast_2025_100283
crossref_primary_10_1007_s13042_025_02794_8
crossref_primary_10_1109_TMI_2022_3222730
crossref_primary_10_1007_s10596_023_10255_w
crossref_primary_10_1016_j_engappai_2024_109593
crossref_primary_10_3390_ai4030039
crossref_primary_10_1109_TNSM_2023_3236348
crossref_primary_10_1287_isre_2023_0591
crossref_primary_10_1109_JIOT_2023_3299262
crossref_primary_10_1109_TBDATA_2025_3556612
crossref_primary_10_1016_j_neucom_2025_131251
crossref_primary_10_1021_acssensors_4c03209
crossref_primary_10_1016_j_jag_2025_104397
crossref_primary_10_1016_j_patcog_2025_111922
crossref_primary_10_1038_s41598_025_92769_0
crossref_primary_10_1177_20552076251343696
crossref_primary_10_1016_j_engappai_2024_109144
crossref_primary_10_3390_en15134602
crossref_primary_10_1088_2632_2153_ad4e04
crossref_primary_10_1007_s10845_025_02658_6
crossref_primary_10_1049_cvi2_12289
crossref_primary_10_1038_s41467_025_59822_y
crossref_primary_10_1088_1475_7516_2025_03_072
crossref_primary_10_1016_j_dsp_2025_105209
crossref_primary_10_1016_j_jbi_2023_104545
crossref_primary_10_1007_s11432_023_3823_6
crossref_primary_10_1038_s41597_024_03878_w
crossref_primary_10_1016_j_dsp_2025_105444
crossref_primary_10_3390_math12172634
crossref_primary_10_1007_s11192_024_04996_3
crossref_primary_10_1109_TGRS_2023_3283217
crossref_primary_10_1016_j_jpi_2023_100357
crossref_primary_10_1190_geo2021_0342_1
crossref_primary_10_1109_TNSM_2023_3281133
crossref_primary_10_1016_j_actaastro_2024_08_045
crossref_primary_10_1109_TITS_2023_3336358
crossref_primary_10_1016_j_neucom_2023_02_018
crossref_primary_10_1109_ACCESS_2022_3172958
crossref_primary_10_1007_s00521_022_06914_1
crossref_primary_10_1016_j_compbiomed_2025_109798
crossref_primary_10_1016_j_eswa_2024_123419
crossref_primary_10_1109_JBHI_2021_3085526
crossref_primary_10_1016_j_molliq_2025_128568
crossref_primary_10_1016_j_jseaes_2024_106369
crossref_primary_10_1109_TUFFC_2022_3190012
crossref_primary_10_1109_JIOT_2023_3320149
crossref_primary_10_1109_TCBB_2021_3102584
crossref_primary_10_1109_JRFID_2024_3371881
crossref_primary_10_1088_1361_6501_adba7e
crossref_primary_10_1109_TKDE_2024_3378482
crossref_primary_10_3390_app13148433
crossref_primary_10_1109_RBME_2023_3296938
crossref_primary_10_1016_j_exer_2025_110394
crossref_primary_10_3390_s25175387
crossref_primary_10_1016_j_segan_2025_101766
crossref_primary_10_1016_j_compeleceng_2024_110045
crossref_primary_10_1016_j_robot_2023_104580
crossref_primary_10_1007_s00521_025_11148_y
crossref_primary_10_3390_electronics12132986
crossref_primary_10_1109_ACCESS_2022_3144406
crossref_primary_10_1109_TITS_2025_3560182
crossref_primary_10_1109_TGRS_2025_3531493
crossref_primary_10_1016_j_fuel_2023_129343
crossref_primary_10_1109_TII_2022_3191980
crossref_primary_10_1109_TEVC_2023_3272663
crossref_primary_10_1109_ACCESS_2024_3485616
crossref_primary_10_1109_TGRS_2022_3176670
crossref_primary_10_1007_s10664_024_10526_9
crossref_primary_10_3390_app11115303
crossref_primary_10_1016_j_nlp_2025_100133
crossref_primary_10_1021_acs_iecr_5c01161
crossref_primary_10_1007_s11517_025_03391_1
crossref_primary_10_1016_j_jmsy_2025_08_005
crossref_primary_10_1109_ACCESS_2025_3556327
crossref_primary_10_4018_JOEUC_374213
crossref_primary_10_1007_s00521_024_10165_7
crossref_primary_10_1016_j_ocemod_2025_102550
crossref_primary_10_1111_jiec_70048
crossref_primary_10_1007_s12145_025_01905_x
crossref_primary_10_1016_j_measurement_2025_117526
crossref_primary_10_1109_TNSM_2022_3224803
crossref_primary_10_23919_AISE_2025_000008
crossref_primary_10_3390_app13137761
crossref_primary_10_1007_s00500_024_09886_7
crossref_primary_10_3390_biomedicines10010070
crossref_primary_10_1007_s00500_025_10646_4
crossref_primary_10_1109_TAI_2025_3530383
crossref_primary_10_1016_j_actamat_2025_121161
crossref_primary_10_1109_ACCESS_2024_3360004
crossref_primary_10_1155_2023_5639207
crossref_primary_10_1016_j_geoen_2024_213608
crossref_primary_10_1109_JPROC_2024_3435012
crossref_primary_10_1007_s13042_023_01892_9
crossref_primary_10_1016_j_neunet_2023_11_043
crossref_primary_10_3390_app14073073
crossref_primary_10_1109_TGRS_2025_3563661
crossref_primary_10_1109_TASE_2024_3516378
crossref_primary_10_1109_TKDE_2022_3203904
crossref_primary_10_1109_JSEN_2021_3132943
crossref_primary_10_1121_10_0011809
crossref_primary_10_1007_s10115_025_02366_w
crossref_primary_10_1186_s12880_023_01109_z
crossref_primary_10_1109_ACCESS_2025_3580056
crossref_primary_10_1145_3663476
crossref_primary_10_3390_computers13120343
crossref_primary_10_1109_ACCESS_2024_3497011
crossref_primary_10_1007_s40747_025_01816_w
crossref_primary_10_1109_TSP_2025_3546458
crossref_primary_10_1007_s10999_025_09773_5
crossref_primary_10_1109_TCOMM_2022_3225920
crossref_primary_10_1016_j_bspc_2024_106857
crossref_primary_10_1145_3747181
crossref_primary_10_1016_j_inffus_2023_102217
crossref_primary_10_1016_j_ress_2025_111209
crossref_primary_10_1016_j_ins_2024_121705
crossref_primary_10_1007_s00521_022_07717_0
crossref_primary_10_1007_s11063_023_11396_w
crossref_primary_10_1109_TNNLS_2023_3281473
crossref_primary_10_4018_IJITSA_345397
crossref_primary_10_1190_geo2024_0260_1
crossref_primary_10_1109_JSTARS_2021_3139017
crossref_primary_10_1088_1741_2552_ad17f4
crossref_primary_10_1590_1981_5344_58057
crossref_primary_10_1109_TIFS_2025_3580224
crossref_primary_10_1016_j_neucom_2025_130792
crossref_primary_10_1109_TSP_2023_3322791
crossref_primary_10_1109_TGRS_2024_3354783
crossref_primary_10_1186_s12911_024_02510_6
crossref_primary_10_1016_j_compbiomed_2025_110718
crossref_primary_10_1109_JIOT_2025_3535744
crossref_primary_10_1186_s12859_023_05524_5
crossref_primary_10_1016_j_neucom_2025_130307
crossref_primary_10_1016_j_isprsjprs_2023_09_001
crossref_primary_10_1007_s00521_025_11451_8
crossref_primary_10_1155_2021_1834428
crossref_primary_10_1109_TKDE_2020_3006048
crossref_primary_10_1109_TIV_2024_3405561
crossref_primary_10_1016_j_neucom_2024_127255
crossref_primary_10_3390_fi17070287
crossref_primary_10_1016_j_rser_2023_114094
crossref_primary_10_1007_s00521_023_09374_3
crossref_primary_10_1093_bib_bbaf408
crossref_primary_10_1109_TNSRE_2024_3395133
crossref_primary_10_1016_j_patcog_2025_112347
crossref_primary_10_1109_TIM_2022_3189735
crossref_primary_10_1109_TIM_2025_3568524
crossref_primary_10_1109_TGRS_2025_3540573
crossref_primary_10_1109_ACCESS_2023_3309050
crossref_primary_10_1016_j_knosys_2025_112995
crossref_primary_10_1038_s41467_025_56481_x
crossref_primary_10_1016_j_eswa_2024_124570
crossref_primary_10_1016_j_knosys_2024_112254
crossref_primary_10_1016_j_patcog_2025_111491
crossref_primary_10_1109_TGRS_2022_3208226
crossref_primary_10_1016_j_sciaf_2023_e01799
crossref_primary_10_3390_app12136296
crossref_primary_10_1109_TAES_2023_3293074
crossref_primary_10_3390_signals4010009
crossref_primary_10_1145_3625820
crossref_primary_10_1109_JBHI_2025_3545927
crossref_primary_10_1109_ACCESS_2023_3322457
crossref_primary_10_1109_LRA_2023_3271445
crossref_primary_10_3390_biomimetics9110708
crossref_primary_10_1007_s00521_023_08335_0
crossref_primary_10_1016_j_ymssp_2023_111051
crossref_primary_10_1167_iovs_65_2_5
crossref_primary_10_1016_j_apenergy_2025_126255
crossref_primary_10_1007_s10115_025_02379_5
crossref_primary_10_1109_JIOT_2023_3281329
crossref_primary_10_4081_jae_2024_1606
crossref_primary_10_1016_j_neucom_2022_09_042
crossref_primary_10_1109_ACCESS_2024_3509033
Cites_doi 10.1109/TPAMI.2014.2343221
10.1609/aaai.v33i01.33013796
10.1137/1.9781611974010.56
10.1109/ICCV.2013.86
10.1145/1553374.1553458
10.18653/v1/P17-1001
10.1145/2499907.2499910
10.1007/11776420_34
10.1145/1835804.1835953
10.1109/CVPR.2014.186
10.1093/nsr/nwx105
10.1186/1471-2105-11-S8-S5
10.1109/TPAMI.2016.2537337
10.1007/978-3-319-10599-4_7
10.1561/2400000003
10.1145/2339530.2339672
10.1109/ICCV.2011.6126528
10.1109/CVPR.2015.7298994
10.1109/TCBB.2010.22
10.1145/2783258.2783393
10.1214/09-AOS776
10.1017/9781139061773
10.1007/s11263-014-0767-8
10.1145/2939672.2939834
10.1109/TKDE.2017.2657624
10.24963/ijcai.2017/253
10.1145/2020408.2020423
10.1145/1390156.1390253
10.1145/2339530.2339617
10.1137/1.9781611974010.57
10.1609/aaai.v29i1.9558
10.1109/TITS.2016.2598356
10.1609/aaai.v25i1.7914
10.1145/2623330.2623641
10.1109/CVPR.2013.61
10.1109/CVPR.2010.5539967
10.1609/aaai.v30i1.10261
10.1109/TKDE.2017.2662006
10.1109/ICCV.2015.383
10.1145/2747879
10.1109/TCYB.2014.2344015
10.1109/TBDATA.2016.2573280
10.1109/CVPR.2015.7298608
10.1109/TPAMI.2008.296
10.1145/3097983.3098152
10.1109/ICDM.2015.68
10.21437/Interspeech.2016-879
10.1145/1273496.1273624
10.1145/1553374.1553392
10.1007/978-3-642-04174-7_40
10.1186/1471-2105-11-181
10.24963/ijcai.2018/435
10.1109/TPAMI.2008.297
10.1007/s10994-007-5040-8
10.1145/1143844.1143900
10.1109/ICASSP.2015.7178780
10.24963/ijcai.2019/505
10.1089/cmb.2016.0201
10.1613/jair.731
10.1137/090763184
10.1109/TIP.2011.2169274
10.21437/Interspeech.2015-659
10.1109/TNNLS.2016.2521602
10.1007/978-0-387-85774-9_8
10.1109/ICDM.2016.0035
10.1145/1390156.1390177
10.1007/978-1-4419-9011-2
10.1109/TKDE.2016.2603983
10.1609/aaai.v29i1.9581
10.1093/bioinformatics/btq191
10.1007/978-3-319-24486-0_13
10.1109/ICASSP.2011.5946926
10.1016/j.neunet.2019.01.012
10.1007/s10994-008-5088-0
10.1609/aaai.v33i01.33015636
10.1109/TCYB.2015.2403356
10.1109/TKDE.2013.39
10.1007/s10994-017-5676-y
10.1093/bioinformatics/btq394
10.1109/TMM.2015.2477680
10.1109/ICDM.2015.130
10.1609/aaai.v28i1.9009
10.1109/TKDE.2017.2703106
10.1109/CVPR.2010.5539975
10.1609/aaai.v24i1.7674
10.1609/aaai.v31i1.10820
10.1137/1.9781611973440.22
10.1145/225298.225336
10.1145/1553374.1553516
10.1093/bioinformatics/btt245
10.1007/11776420_8
10.1145/2538028
10.1007/978-3-642-12683-3_34
10.1109/ICCV.2015.430
10.1145/3097983.3098136
10.1145/1102351.1102479
10.1093/bioinformatics/btq181
10.1093/bioinformatics/btw249
10.1609/aaai.v27i1.8577
10.1109/CVPR.2016.433
10.1609/aaai.v27i1.8557
10.1145/2783258.2783377
10.1007/s10994-013-5379-y
10.1007/978-3-642-33460-3_50
10.1109/TPAMI.2015.2452911
10.1109/ICCV.2013.150
10.1145/2396761.2398508
10.1162/NECO_a_00844
10.21437/Interspeech.2015-265
10.1145/1014052.1014067
10.1145/1273496.1273583
10.1093/bioinformatics/bty457
10.1145/1835804.1835952
10.1145/1645953.1646169
10.1007/s10994-007-5043-5
10.1109/TSP.2008.924798
10.1145/1390156.1390159
10.1109/ICASSP.2015.7178814
10.1145/2939672.2939857
10.1145/2020408.2020549
10.1609/aaai.v25i1.7909
10.1137/1.9781611975673.2
10.1109/TPAMI.2017.2679002
10.1145/1390156.1390164
10.1145/1273496.1273630
10.1023/A:1007379606734
10.1145/2556195.2556264
10.1007/s11263-012-0582-z
10.1137/1.9781611974348.74
10.1186/1471-2105-12-389
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TKDE.2021.3070203
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1558-2191
EndPage 5609
ExternalDocumentID 10_1109_TKDE_2021_3070203
9392366
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China; NSFC
  grantid: 62076118
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-c9f68ede8c9d90c0353d5b6879bcacdb40ee101f694bcc47b91e90b5ae92f32a3
IEDL.DBID RIE
ISICitedReferencesCount 1355
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000880645200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1041-4347
IngestDate Sun Nov 09 05:29:55 EST 2025
Sat Nov 29 02:36:03 EST 2025
Tue Nov 18 22:28:57 EST 2025
Wed Aug 27 02:18:57 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-c9f68ede8c9d90c0353d5b6879bcacdb40ee101f694bcc47b91e90b5ae92f32a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1100-4835
PQID 2734385688
PQPubID 85438
PageCount 24
ParticipantIDs crossref_primary_10_1109_TKDE_2021_3070203
ieee_primary_9392366
crossref_citationtrail_10_1109_TKDE_2021_3070203
proquest_journals_2734385688
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on knowledge and data engineering
PublicationTitleAbbrev TKDE
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref56
ref59
ref205
ref58
ref206
ref204
ref55
ref201
ref202
zhang (ref79) 2010
wan (ref217) 2012
ref209
zhang (ref167) 2015
ref211
ref51
ref218
ref45
ref219
ref216
ref41
ref215
ref44
ref212
ref213
görnitz (ref75) 2011
gong (ref106) 2012
rusu (ref152) 2016
ref7
ref9
ref4
wang (ref223) 2012
ref3
jacob (ref61) 2008
ref5
ref100
ref221
agarwal (ref42) 2010
ref101
ref222
kumar (ref66) 2012
ref220
yim (ref208) 2015
solnon (ref107) 2012; 13
sener (ref115) 2018
kakade (ref255) 2012; 13
bonilla (ref76) 2007
ref34
ref33
guo (ref164) 2020
zweig (ref103) 2013
honorio (ref172) 2010
lozano (ref31) 2012
wang (ref32) 2014
ref20
omidshafiei (ref153) 2017
zhang (ref108) 2018
ref22
wang (ref210) 2009
ref21
yang (ref47) 2017
wang (ref186) 2016
ref27
saha (ref181) 2011
ref29
chai (ref77) 2009
li (ref128) 2009
oyen (ref173) 2012
ref200
lounici (ref263) 2009
parameswaran (ref70) 2010
thrun (ref48) 1996
kolar (ref265) 2011; 12
deshmukh (ref146) 2017
ref249
ref129
yu (ref116) 2020
ref126
ref247
ref127
li (ref142) 2009; 10
kim (ref35) 2010
ref99
ref124
ref245
ref246
crammer (ref49) 2012
bakker (ref50) 2003; 4
pentina (ref130) 2017
ref133
ref254
ref134
ref131
ref252
ref132
ref253
ref250
sharma (ref157) 2018
ref139
tutunov (ref159) 2018
ref258
ref85
ref138
ref135
ref87
ref257
wimalawarne (ref114) 2014
bsat (ref155) 2017
rai (ref92) 2012
hernández-lobato (ref38) 2013
ref82
passos (ref60) 2012
ref81
zhang (ref233) 2010
ref264
ref140
yang (ref6) 2009
ref141
ref80
ref229
ref109
ref227
ref228
ref104
sharma (ref156) 2017
ref74
ref226
ref224
yang (ref90) 2013
wang (ref214) 2011
ref232
chai (ref234) 2008
ref111
ref230
xue (ref54) 2007; 8
ref231
ref119
ref238
ref69
ref239
ref118
ref236
ref63
ref237
ref65
ref235
reichart (ref125) 2008
kato (ref72) 2007
rao (ref26) 2013
chen (ref117) 2018
argyriou (ref11) 2007
ref243
ref244
ref123
lugosi (ref178) 2009
ref241
ref120
ref242
ref121
ref240
zhang (ref96) 2013
alamgir (ref225) 2010
zhu (ref13) 2011
zhong (ref102) 2012
zhang (ref137) 2016
bräm (ref148) 2019
ref168
ref169
cavallanti (ref179) 2010; 11
ref170
dekel (ref177) 2007; 8
ref175
ref176
ref174
hernández-lobato (ref39) 2015
lazaric (ref143) 2010
zhang (ref91) 2013
wang (ref136) 2015
zhou (ref36) 2010
lee (ref97) 2016
dinuzzo (ref83) 2011
zhang (ref248) 2017
ref180
rakitsch (ref93) 2013
ref188
calandriello (ref144) 2014
ref187
ref184
titsias (ref14) 2011
ref185
evgeniou (ref71) 2005; 6
ref183
lee (ref25) 2010
ref149
parisotto (ref151) 2016
obozinski (ref23) 2006
yousefi (ref260) 2018; 19
smith (ref189) 2017
zhang (ref43) 2005
barzilai (ref64) 2015
liu (ref122) 2007
zhang (ref192) 2012
zhang (ref37) 2010
maurer (ref12) 2013
d’eramo (ref161) 2020
long (ref95) 2017
romera-paredes (ref113) 2013
maurer (ref259) 2016; 17
zhang (ref88) 2010
teh (ref154) 2017
ref166
ref163
liao (ref8) 2005
quadrianto (ref112) 2010
ref15
he (ref165) 2011
ref10
lian (ref53) 2015
ciliberto (ref84) 2015
ref17
ref16
ref19
luong (ref207) 2016
gong (ref30) 2013; 14
zheng (ref203) 2008
yu (ref52) 2007
zhang (ref78) 2010
archambeau (ref89) 2011
pontil (ref256) 2013
argyriou (ref261) 2009; 10
lin (ref160) 2019
mcdonald (ref46) 2014
zhou (ref68) 2011
wang (ref28) 2015
han (ref110) 2012
liu (ref24) 2009
maurer (ref251) 2006; 7
kang (ref62) 2011
andreas (ref145) 2017
murugesan (ref182) 2016
espeholt (ref158) 2018
jalali (ref98) 2010
ref2
ref1
ref191
gonçalves (ref94) 2016; 7
ref190
ando (ref40) 2005; 6
ref199
ref197
ref195
feldman (ref73) 2014; 15
ref196
ref193
ref194
argyriou (ref262) 2010; 11
mrksic (ref18) 2015
igl (ref150) 2020
jawanpuria (ref86) 2015
yang (ref67) 2017
ghosn (ref198) 1996
shu (ref162) 2018
jawanpuria (ref105) 2012
niculescu-mizil (ref171) 2012
saxe (ref147) 2017
References_xml – ident: ref135
  doi: 10.1109/TPAMI.2014.2343221
– start-page: 2411
  year: 2014
  ident: ref32
  article-title: On multiplicative multitask feature learning
  publication-title: Proc Int Conf Neural Inf Process
– start-page: 279
  year: 2009
  ident: ref77
  article-title: Generalization errors and learning curves for regression with multi-task Gaussian processes
  publication-title: Proc 22nd Int Conf Neural Inf Process Syst
– ident: ref163
  doi: 10.1609/aaai.v33i01.33013796
– start-page: 2202
  year: 2013
  ident: ref26
  article-title: Sparse overlapping sets lasso for multitask learning and its application to fMRI analysis
  publication-title: Proc Int Conf Neural Inf Process
– ident: ref227
  doi: 10.1137/1.9781611974010.56
– ident: ref244
  doi: 10.1109/ICCV.2013.86
– start-page: 134
  year: 2019
  ident: ref148
  article-title: Attentive multi-task deep reinforcement learning
  publication-title: Proc Eur Conf Mach Learn Knowl Discovery Databases
– start-page: 339
  year: 2009
  ident: ref24
  article-title: Multi-task feature learning via efficient $l_{2,1}$l2,1-norm minimization
  publication-title: Proc 25th Conf Uncertainty Artif Intell
– volume: 14
  start-page: 2979
  year: 2013
  ident: ref30
  article-title: Multi-stage multi-task feature learning
  publication-title: J Mach Learn Res
– ident: ref29
  doi: 10.1145/1553374.1553458
– ident: ref21
  doi: 10.18653/v1/P17-1001
– start-page: 969
  year: 2020
  ident: ref150
  article-title: Multitask soft option learning
  publication-title: Proc Conf Uncertainty Artif Intell
– ident: ref82
  doi: 10.1145/2499907.2499910
– ident: ref176
  doi: 10.1007/11776420_34
– start-page: 2339
  year: 2011
  ident: ref14
  article-title: Spike and slab variational inference for multi-task and multiple kernel learning
  publication-title: Proc 24th Int Conf Neural Inf Process Syst
– ident: ref231
  doi: 10.1145/1835804.1835953
– ident: ref205
  doi: 10.1109/CVPR.2014.186
– start-page: 595
  year: 2012
  ident: ref31
  article-title: Multi-level lasso for sparse multi-task regression
  publication-title: Proc 29th Int Conf Mach Learn
– year: 2016
  ident: ref152
  article-title: Policy distillation
  publication-title: Proc Int Conf Learn Representations
– ident: ref5
  doi: 10.1093/nsr/nwx105
– start-page: 861
  year: 2008
  ident: ref125
  article-title: Multi-task active learning for linguistic annotations
  publication-title: Proc Annual Meeting of the Assoc Computational Linguistics
– ident: ref236
  doi: 10.1186/1471-2105-11-S8-S5
– start-page: 265
  year: 2008
  ident: ref234
  article-title: Multi-task Gaussian process learning of robot inverse dynamics
  publication-title: Proc Int Conf Neural Inf Process
– start-page: 4055
  year: 2015
  ident: ref167
  article-title: Multi-task multi-view clustering for non-negative data
  publication-title: Proc Int Joint Conf Artif Intell
– ident: ref229
  doi: 10.1109/TPAMI.2016.2537337
– start-page: 1620
  year: 2011
  ident: ref13
  article-title: Infinite latent SVM for classification and multi-task learning
  publication-title: Proc 24th Int Conf Neural Inf Process Syst
– ident: ref15
  doi: 10.1007/978-3-319-10599-4_7
– ident: ref118
  doi: 10.1561/2400000003
– ident: ref101
  doi: 10.1145/2339530.2339672
– ident: ref220
  doi: 10.1109/ICCV.2011.6126528
– start-page: 2042
  year: 2012
  ident: ref192
  article-title: Robust visual tracking via multi-task sparse learning
  publication-title: Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit
– ident: ref16
  doi: 10.1109/CVPR.2015.7298994
– ident: ref194
  doi: 10.1109/TCBB.2010.22
– ident: ref104
  doi: 10.1145/2783258.2783393
– start-page: 363
  year: 2012
  ident: ref110
  article-title: Cross-domain multitask learning with latent probit models
  publication-title: Proc 29th Int Conf Mach Learn
– start-page: 937
  year: 2007
  ident: ref122
  article-title: Semi-supervised multitask learning
  publication-title: Proc Int Conf Neural Inf Process
– ident: ref264
  doi: 10.1214/09-AOS776
– ident: ref2
  doi: 10.1017/9781139061773
– ident: ref19
  doi: 10.1007/s11263-014-0767-8
– start-page: 525
  year: 2018
  ident: ref115
  article-title: Multi-task learning as multi-objective optimization
  publication-title: Proc Int Conf Neural Inf Process
– ident: ref174
  doi: 10.1145/2939672.2939834
– year: 2009
  ident: ref178
  article-title: Online multi-task learning with hard constraints
  publication-title: Proc 22nd Conf Learn Theory
– ident: ref121
  doi: 10.1109/TKDE.2017.2657624
– ident: ref184
  doi: 10.24963/ijcai.2017/253
– ident: ref100
  doi: 10.1145/2020408.2020423
– start-page: 46
  year: 2010
  ident: ref42
  article-title: Learning multiple tasks using manifold regularization
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 343
  year: 2013
  ident: ref12
  article-title: Sparse coding for multitask and transfer learning
  publication-title: Proc 30th Int Conf Mach Learn
– start-page: 1896
  year: 2013
  ident: ref96
  article-title: Heterogeneous-neighborhood-based multi-task local learning algorithms
  publication-title: Proc Int Conf Neural Inf Process
– start-page: 1444
  year: 2013
  ident: ref113
  article-title: Multilinear multitask learning
  publication-title: Proc 30th Int Conf Mach Learn
– start-page: 1427
  year: 2008
  ident: ref203
  article-title: Transferring multi-device localization models using latent multi-task learning
  publication-title: Proc AAAI Conf Artif Intell
– ident: ref57
  doi: 10.1145/1390156.1390253
– start-page: 4851
  year: 2017
  ident: ref146
  article-title: Multi-task learning for contextual bandits
  publication-title: Proc Int Conf Neural Inf Process
– ident: ref166
  doi: 10.1145/2339530.2339617
– start-page: 794
  year: 2018
  ident: ref117
  article-title: Gradnorm: Gradient normalization for adaptive loss balancing in deep multitask networks
  publication-title: Proc Int Conf Mach Learn
– start-page: 946
  year: 1996
  ident: ref198
  article-title: Multi-task learning for stock selection
  publication-title: Proc Int Conf Neural Inf Process
– year: 2017
  ident: ref156
  article-title: Online multi-task learning using active sampling
  publication-title: Proc Int Conf Learn Representations Workshop
– volume: 17
  start-page: 1
  year: 2016
  ident: ref259
  article-title: The benefit of multitask representation learning
  publication-title: J Mach Learn Res
– year: 2006
  ident: ref23
  article-title: Multi-task feature selection
– year: 2012
  ident: ref66
  article-title: Learning task grouping and overlap in multi-task learning
  publication-title: Proc 29th Int Conf Mach Learn
– ident: ref127
  doi: 10.1137/1.9781611974010.57
– ident: ref258
  doi: 10.1609/aaai.v29i1.9558
– ident: ref239
  doi: 10.1109/TITS.2016.2598356
– ident: ref134
  doi: 10.1609/aaai.v25i1.7914
– ident: ref27
  doi: 10.1145/2623330.2623641
– start-page: 1283
  year: 2012
  ident: ref60
  article-title: Flexible modeling of latent task structures in multitask learning
  publication-title: Proc 29th Int Conf Mach Learn
– ident: ref199
  doi: 10.1109/CVPR.2013.61
– ident: ref211
  doi: 10.1109/CVPR.2010.5539967
– ident: ref45
  doi: 10.1609/aaai.v30i1.10261
– ident: ref241
  doi: 10.1109/TKDE.2017.2662006
– ident: ref209
  doi: 10.1109/ICCV.2015.383
– ident: ref133
  doi: 10.1145/2747879
– ident: ref138
  doi: 10.1109/TCYB.2014.2344015
– volume: 13
  start-page: 1865
  year: 2012
  ident: ref255
  article-title: Regularization techniques for learning with matrices
  publication-title: J Mach Learn Res
– ident: ref17
  doi: 10.1109/TBDATA.2016.2573280
– start-page: 1209
  year: 2015
  ident: ref136
  article-title: Multi-task learning for subspace segmentation
  publication-title: Proc Int Conf Mach Learn
– ident: ref85
  doi: 10.1109/CVPR.2015.7298608
– start-page: 1306
  year: 2010
  ident: ref25
  article-title: Adaptive multi-task lasso: With application to eQTL detection
  publication-title: Proc Int Conf Neural Inf Process
– volume: 8
  start-page: 35
  year: 2007
  ident: ref54
  article-title: Multi-task learning for classification with Dirichlet process priors
  publication-title: J Mach Learn Res
– volume: 6
  start-page: 1817
  year: 2005
  ident: ref40
  article-title: A framework for learning predictive structures from multiple tasks and unlabeled data
  publication-title: J Mach Learn Res
– start-page: 167
  year: 2012
  ident: ref171
  article-title: Inductive transfer for Bayesian network structure learning
  publication-title: Proc Mach Learn
– start-page: 142
  year: 2009
  ident: ref210
  article-title: Boosted multi-task learning for face verification with applications to web image and video search
  publication-title: Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit
– start-page: 2807
  year: 2017
  ident: ref130
  article-title: Multi-task learning with labeled and unlabeled tasks
  publication-title: Proc Int Conf Mach Learn
– start-page: 4773
  year: 2019
  ident: ref160
  article-title: Adaptive auxiliary task weighting for reinforcement learning
  publication-title: Proc Int Conf Neural Inf Process
– start-page: 3185
  year: 2012
  ident: ref92
  article-title: Simultaneously leveraging output and task structures for multiple-output regression
  publication-title: Proc 25th Int Conf Neural Inf Process Syst
– ident: ref123
  doi: 10.1109/TPAMI.2008.296
– start-page: 1406
  year: 2018
  ident: ref158
  article-title: IMPALA: Scalable distributed deep-RL with importance weighted actor-learner architectures
  publication-title: Proc Int Conf Mach Learn
– start-page: 4427
  year: 2017
  ident: ref189
  article-title: Federated multi-task learning
  publication-title: Proc Int Conf Neural Inf Process
– ident: ref188
  doi: 10.1145/3097983.3098152
– ident: ref230
  doi: 10.1109/ICDM.2015.68
– start-page: 2559
  year: 2010
  ident: ref37
  article-title: Probabilistic multi-task feature selection
  publication-title: Proc Int Conf Neural Inf Process
– start-page: 1531
  year: 2012
  ident: ref105
  article-title: A convex feature learning formulation for latent task structure discovery
  publication-title: Proc 29th Int Conf Mach Learn
– start-page: 2030
  year: 2015
  ident: ref53
  article-title: A multitask point process predictive model
  publication-title: Proc Int Conf Mach Learn
– ident: ref20
  doi: 10.21437/Interspeech.2016-879
– start-page: 1475
  year: 2012
  ident: ref49
  article-title: Learning multiple tasks using shared hypotheses
  publication-title: Proc 25th Int Conf Neural Inf Process Syst
– start-page: 8921
  year: 2018
  ident: ref159
  article-title: Distributed multitask reinforcement learning with quadratic convergence
  publication-title: Proc Int Conf Neural Inf Process
– start-page: 940
  year: 2012
  ident: ref217
  article-title: Sparse Bayesian multi-task learning for predicting cognitive outcomes from neuroimaging measures in Alzheimer's disease
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– start-page: 65
  year: 2012
  ident: ref102
  article-title: Convex multitask learning with flexible task clusters
  publication-title: Proc 18th Int Conf Artif Intell Statist
– volume: 11
  start-page: 935
  year: 2010
  ident: ref262
  article-title: On spectral learning
  publication-title: J Mach Learn Res
– ident: ref141
  doi: 10.1145/1273496.1273624
– ident: ref41
  doi: 10.1145/1553374.1553392
– ident: ref124
  doi: 10.1007/978-3-642-04174-7_40
– year: 2018
  ident: ref162
  article-title: Hierarchical and interpretable skill acquisition in multi-task reinforcement learning
  publication-title: Proc Int Conf Learn Representations
– ident: ref212
  doi: 10.1186/1471-2105-11-181
– volume: 12
  start-page: 2415
  year: 2011
  ident: ref265
  article-title: Union support recovery in multi-task learning
  publication-title: J Mach Learn Res
– ident: ref140
  doi: 10.24963/ijcai.2018/435
– ident: ref180
  doi: 10.1109/TPAMI.2008.297
– ident: ref10
  doi: 10.1007/s10994-007-5040-8
– ident: ref253
  doi: 10.1145/1143844.1143900
– start-page: 1091
  year: 2012
  ident: ref173
  article-title: Leveraging domain knowledge in multitask Bayesian network structure learning
  publication-title: Proc AAAI Conf Artif Intell
– start-page: 794
  year: 2015
  ident: ref18
  article-title: Multi-domain dialog state tracking using recurrent neural networks
  publication-title: Proc Annual Meeting of the Assoc Computational Linguistics
– ident: ref201
  doi: 10.1109/ICASSP.2015.7178780
– ident: ref149
  doi: 10.24963/ijcai.2019/505
– start-page: 964
  year: 2010
  ident: ref78
  article-title: Multi-task learning using generalized $t$t process
  publication-title: Proc 13th Int Conf Artif Intell Statist
– ident: ref246
  doi: 10.1089/cmb.2016.0201
– ident: ref250
  doi: 10.1613/jair.731
– start-page: 792
  year: 2005
  ident: ref8
  article-title: Radial basis function network for multi-task learning
  publication-title: Proc Int Conf Neural Inf Process
– start-page: 521
  year: 2011
  ident: ref62
  article-title: Learning with whom to share in multi-task feature learning
  publication-title: Proc 28th Int Conf Mach Learn
– ident: ref44
  doi: 10.1137/090763184
– start-page: 49
  year: 2011
  ident: ref83
  article-title: Learning output kernels with block coordinate descent
  publication-title: Proc 28th Int Conf Mach Learn
– ident: ref222
  doi: 10.1109/TIP.2011.2169274
– start-page: 737
  year: 2007
  ident: ref72
  article-title: Multi-task learning via conic programming
  publication-title: Proc Int Conf Neural Inf Process
– start-page: 1
  year: 2020
  ident: ref161
  article-title: Sharing knowledge in multi-task deep reinforcement learning
  publication-title: Proc Int Conf Learn Representations
– ident: ref202
  doi: 10.21437/Interspeech.2015-659
– ident: ref139
  doi: 10.1109/TNNLS.2016.2521602
– volume: 13
  start-page: 2773
  year: 2012
  ident: ref107
  article-title: Multi-task regression using minimal penalties
  publication-title: J Mach Learn Res
– start-page: 1103
  year: 2007
  ident: ref52
  article-title: Robust multi-task learning with t-processes
  publication-title: Proc 24th Int Conf Mach Learn
– ident: ref235
  doi: 10.1007/978-0-387-85774-9_8
– year: 2018
  ident: ref157
  article-title: Learning to multi-task by active sampling
  publication-title: Proc Int Conf Learn Representations
– start-page: 2690
  year: 2011
  ident: ref75
  article-title: Hierarchical multitask structured output learning for large-scale sequence segmentation
  publication-title: Proc 24th Int Conf Neural Inf Process Syst
– ident: ref129
  doi: 10.1109/ICDM.2016.0035
– ident: ref204
  doi: 10.1145/1390156.1390177
– ident: ref34
  doi: 10.1007/978-1-4419-9011-2
– start-page: 3644
  year: 2014
  ident: ref46
  article-title: Spectral $k$k-support norm regularization
  publication-title: Proc 27th Int Conf Neural Inf Process Syst
– start-page: 733
  year: 2010
  ident: ref79
  article-title: A convex formulation for learning task relationships in multi-task learning
  publication-title: Proc 26th Conf Uncertainty Artif Intell
– volume: 6
  start-page: 615
  year: 2005
  ident: ref71
  article-title: Learning multiple tasks with kernel methods
  publication-title: J Mach Learn Res
– start-page: 1867
  year: 2010
  ident: ref70
  article-title: Large margin multi-task metric learning
  publication-title: Proc Int Conf Neural Inf Process
– ident: ref168
  doi: 10.1109/TKDE.2016.2603983
– ident: ref63
  doi: 10.1609/aaai.v29i1.9581
– year: 2015
  ident: ref64
  article-title: Convex multi-task learning by clustering
  publication-title: Proc Artif Intell Statist
– ident: ref215
  doi: 10.1093/bioinformatics/btq191
– ident: ref257
  doi: 10.1007/978-3-319-24486-0_13
– start-page: 746
  year: 2013
  ident: ref38
  article-title: Learning feature selection dependencies in multi-task learning
  publication-title: Proc Int Conf Neural Inf Process
– ident: ref56
  doi: 10.1109/ICASSP.2011.5946926
– year: 2016
  ident: ref207
  article-title: Multi-task sequence to sequence learning
  publication-title: Proc Int Conf Learn Representations
– ident: ref4
  doi: 10.1016/j.neunet.2019.01.012
– ident: ref9
  doi: 10.1007/s10994-008-5088-0
– volume: 10
  start-page: 1131
  year: 2009
  ident: ref142
  article-title: Multi-task reinforcement learning in partially observable stochastic environments
  publication-title: J Mach Learn Res
– ident: ref185
  doi: 10.1609/aaai.v33i01.33015636
– year: 2017
  ident: ref248
  article-title: A survey on multi-task learning
– ident: ref169
  doi: 10.1109/TCYB.2015.2403356
– ident: ref3
  doi: 10.1109/TKDE.2013.39
– start-page: 2151
  year: 2009
  ident: ref6
  article-title: Heterogeneous multitask learning with joint sparsity constraints
  publication-title: Proc Int Conf Neural Inf Process
– ident: ref190
  doi: 10.1007/s10994-017-5676-y
– ident: ref200
  doi: 10.1093/bioinformatics/btq394
– year: 2007
  ident: ref11
  article-title: A spectral regularization framework for multi-task structure learning
  publication-title: Proc Int Conf Neural Inf Process
– ident: ref206
  doi: 10.1109/TMM.2015.2477680
– start-page: 153
  year: 2007
  ident: ref76
  article-title: Multi-task Gaussian process prediction
  publication-title: Proc Int Neural Inf Process Syst
– ident: ref175
  doi: 10.1109/ICDM.2015.130
– start-page: 1847
  year: 2017
  ident: ref155
  article-title: Scalable multitask policy gradient reinforcement learning
  publication-title: Proc AAAI Conf Artif Intell
– start-page: 2357
  year: 2016
  ident: ref137
  article-title: Self-adapted multi-task clustering
  publication-title: Proc Int Joint Conf Artif Intell
– volume: 7
  start-page: 117
  year: 2006
  ident: ref251
  article-title: Bounds for linear multi-task learning
  publication-title: J Mach Learn Res
– start-page: 447
  year: 2010
  ident: ref172
  article-title: Multi-task learning of Gaussian graphical models
  publication-title: Proc Int Conf Mach Learn
– ident: ref33
  doi: 10.1609/aaai.v28i1.9009
– start-page: 1277
  year: 2012
  ident: ref223
  article-title: High-order multi-task feature learning to identify longitudinal phenotypic markers for Alzheimer's disease progression prediction
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref183
  doi: 10.1109/TKDE.2017.2703106
– ident: ref226
  doi: 10.1109/CVPR.2010.5539975
– start-page: 3875
  year: 2020
  ident: ref164
  article-title: Bootstrap latent-predictive representations for multitask reinforcement learning
  publication-title: Proc Int Conf Mach Learn
– ident: ref131
  doi: 10.1609/aaai.v24i1.7674
– start-page: 230
  year: 2016
  ident: ref97
  article-title: Asymmetric multi-task learning based on task relatedness and loss
  publication-title: Proc Int Conf Mach Learn
– start-page: 3017
  year: 2017
  ident: ref147
  article-title: Hierarchy through composition with multitask LMDPs
  publication-title: Proc Int Conf Mach Learn
– start-page: 5
  year: 2014
  ident: ref144
  article-title: Sparse multi-task reinforcement learning
  publication-title: Proc Int Conf Neural Inf Process
– ident: ref87
  doi: 10.1609/aaai.v31i1.10820
– ident: ref126
  doi: 10.1137/1.9781611973440.22
– start-page: 643
  year: 2011
  ident: ref181
  article-title: Online learning of multiple tasks and their relationships
  publication-title: Proc Int Conf Artif Intell Statist
– ident: ref249
  doi: 10.1145/225298.225336
– ident: ref191
  doi: 10.1145/1553374.1553516
– start-page: 2066
  year: 2012
  ident: ref106
  article-title: Geodesic flow kernel for unsupervised domain adaptation
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– start-page: 745
  year: 2008
  ident: ref61
  article-title: Clustered multi-task learning: A convex formulation
  publication-title: Proc 18th Int Conf Artif Intell Statist
– start-page: 1593
  year: 2017
  ident: ref95
  article-title: Learning multiple tasks with multilinear relationship networks
  publication-title: Proc 31st Int Conf Neural Inf Process Syst
– ident: ref242
  doi: 10.1093/bioinformatics/btt245
– start-page: 1957
  year: 2010
  ident: ref112
  article-title: Multitask learning without label correspondences
  publication-title: Proc 23rd Int Conf Neural Inf Process Syst
– ident: ref252
  doi: 10.1007/11776420_8
– volume: 8
  start-page: 2233
  year: 2007
  ident: ref177
  article-title: Online learning of multiple tasks with a shared loss
  publication-title: J Mach Learn Res
– ident: ref80
  doi: 10.1145/2538028
– ident: ref232
  doi: 10.1007/978-3-642-12683-3_34
– year: 2017
  ident: ref67
  article-title: Deep multi-task representation learning: A tensor factorisation approach
  publication-title: Proc Int Conf Mach Representations
– ident: ref228
  doi: 10.1109/ICCV.2015.430
– ident: ref187
  doi: 10.1145/3097983.3098136
– ident: ref51
  doi: 10.1145/1102351.1102479
– start-page: 543
  year: 2010
  ident: ref35
  article-title: Tree-guided group lasso for multi-task regression with structured sparsity
  publication-title: Proc 27th Int Conf Mach Learn
– ident: ref219
  doi: 10.1093/bioinformatics/btq181
– ident: ref218
  doi: 10.1093/bioinformatics/btw249
– year: 2011
  ident: ref68
  article-title: Clustered multi-task learning via alternating structure optimization
  publication-title: Proc Int Conf Neural Inf Process
– start-page: 5776
  year: 2018
  ident: ref108
  article-title: Learning to multitask
  publication-title: Proc 32nd Int Conf Neural Inf Process Syst
– start-page: 423
  year: 2013
  ident: ref90
  article-title: Multi-task learning with Gaussian matrix generalized inverse Gaussian model
  publication-title: Proc Int Conf Mach Learn
– volume: 10
  start-page: 2507
  year: 2009
  ident: ref261
  article-title: When is there a representer theorem? Vector versus matrix regularizers
  publication-title: J Mach Learn Res
– ident: ref238
  doi: 10.1609/aaai.v27i1.8577
– year: 2016
  ident: ref151
  article-title: Actor-mimic: Deep multitask and transfer reinforcement learning
  publication-title: Proc Int Conf Learn Representations
– start-page: 2550
  year: 2010
  ident: ref88
  article-title: Learning multiple tasks with a sparse matrix-normal penalty
  publication-title: Proc 23rd Int Conf Neural Inf Process Syst
– year: 2017
  ident: ref47
  article-title: Trace norm regularised deep multi-task learning
  publication-title: Proc 5th Int Conf Learn Representation Workshop Track
– start-page: 1548
  year: 2015
  ident: ref84
  article-title: Convex learning of multiple tasks and their structure
  publication-title: Proc 32nd Int Conf Mach Learn
– ident: ref22
  doi: 10.1109/CVPR.2016.433
– start-page: 489
  year: 1996
  ident: ref48
  article-title: Discovering structure in multiple learning tasks: The TC algorithm
  publication-title: Proc 13th Int Conf Mach Learn
– ident: ref132
  doi: 10.1609/aaai.v27i1.8557
– ident: ref119
  doi: 10.1145/2783258.2783377
– ident: ref111
  doi: 10.1007/s10994-013-5379-y
– start-page: 4303
  year: 2016
  ident: ref182
  article-title: Adaptive smoothed online multi-task learning
  publication-title: Proc Int Conf Neural Inf Process
– ident: ref81
  doi: 10.1007/978-3-642-33460-3_50
– ident: ref65
  doi: 10.1109/TPAMI.2015.2452911
– start-page: 1755
  year: 2011
  ident: ref89
  article-title: Sparse Bayesian multi-task learning
  publication-title: Proc Int Conf Neural Inf Process
– start-page: 1637
  year: 2009
  ident: ref128
  article-title: Active learning for semi-supervised multi-task learning
  publication-title: Proc IEEE Int Conf Acoust Speech Signal Process
– start-page: 1466
  year: 2013
  ident: ref93
  article-title: It is all in the noise: Efficient multi-task Gaussian process inference with structured residuals
  publication-title: Proc 26th Int Conf Neural Inf Process Syst
– ident: ref245
  doi: 10.1109/ICCV.2013.150
– volume: 7
  start-page: 1
  year: 2016
  ident: ref94
  article-title: Multi-task sparse structure learning with Gaussian copula models
  publication-title: J Mach Learn Res
– ident: ref213
  doi: 10.1145/2396761.2398508
– ident: ref74
  doi: 10.1162/NECO_a_00844
– ident: ref196
  doi: 10.21437/Interspeech.2015-265
– start-page: 37
  year: 2013
  ident: ref103
  article-title: Hierarchical regularization cascade for joint learning
  publication-title: Proc Int Conf Mach Learn
– start-page: 1189
  year: 2015
  ident: ref86
  article-title: Efficient output kernel learning for multiple tasks
  publication-title: Proc Int Conf Neural Process Syst
– start-page: 751
  year: 2016
  ident: ref186
  article-title: Distributed multi-task learning
  publication-title: Proc Int Conf Artif Intell Statist
– ident: ref69
  doi: 10.1145/1014052.1014067
– start-page: 1917
  year: 2013
  ident: ref91
  article-title: Learning high-order task relationships in multi-task learning
  publication-title: Proc 23rd Int Joint Conf Artif Intell
– ident: ref58
  doi: 10.1145/1273496.1273583
– volume: 4
  start-page: 83
  year: 2003
  ident: ref50
  article-title: Task clustering and gating for Bayesian multitask learning
  publication-title: J Mach Learn Res
– start-page: 166
  year: 2017
  ident: ref145
  article-title: Modular multitask reinforcement learning with policy sketches
  publication-title: Proc Int Conf Mach Learn
– start-page: 2681
  year: 2017
  ident: ref153
  article-title: Deep decentralized multi-task multi-agent reinforcement learning under partial observability
  publication-title: Proc Int Conf Mach Learn
– ident: ref243
  doi: 10.1093/bioinformatics/bty457
– ident: ref99
  doi: 10.1145/1835804.1835952
– ident: ref197
  doi: 10.1145/1645953.1646169
– ident: ref254
  doi: 10.1007/s10994-007-5043-5
– ident: ref59
  doi: 10.1109/TSP.2008.924798
– start-page: 4499
  year: 2017
  ident: ref154
  article-title: Distral: Robust multitask reinforcement learning
  publication-title: Proc Int Conf Neural Inf Process
– ident: ref224
  doi: 10.1145/1390156.1390159
– start-page: 1747
  year: 2015
  ident: ref28
  article-title: Safe screening for multi-task feature learning with multiple data matrices
  publication-title: Proc Int Conf Mach Learn
– ident: ref195
  doi: 10.1109/ICASSP.2015.7178814
– volume: 15
  start-page: 3621
  year: 2014
  ident: ref73
  article-title: Revisiting Stein's paradox: Multi-task averaging
  publication-title: J Mach Learn Res
– volume: 11
  start-page: 2901
  year: 2010
  ident: ref179
  article-title: Linear algorithms for online multitask classification
  publication-title: J Mach Learn Res
– start-page: 988
  year: 2010
  ident: ref36
  article-title: Exclusive lasso for multi-task feature selection
  publication-title: Proc 13th Int Conf Artif Intell Statist
– start-page: 557
  year: 2011
  ident: ref214
  article-title: Sparse multi-task regression and feature selection to identify brain imaging predictors for memory performance
  publication-title: Proc IEEE Int Conf Comput Vis
– ident: ref120
  doi: 10.1145/2939672.2939857
– ident: ref216
  doi: 10.1145/2020408.2020549
– start-page: 725
  year: 2010
  ident: ref233
  article-title: Multi-domain collaborative filtering
  publication-title: Proc Conf Uncertainty Artif Intell
– ident: ref109
  doi: 10.1609/aaai.v25i1.7909
– ident: ref170
  doi: 10.1137/1.9781611975673.2
– year: 2009
  ident: ref263
  article-title: Taking advantage of sparsity in multi-task learning
  publication-title: Proc Annu Conf Learn Theory
– start-page: 676
  year: 2015
  ident: ref208
  article-title: Rotating your face using multi-task deep neural network
  publication-title: Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit
– start-page: 25
  year: 2011
  ident: ref165
  article-title: A graph-based framework for multi-task multi-view learning
  publication-title: Proc Int Conf Mach Learn
– ident: ref247
  doi: 10.1109/TPAMI.2017.2679002
– start-page: 17
  year: 2010
  ident: ref225
  article-title: Multitask learning for brain-computer interfaces
  publication-title: Mach Learn Res
– ident: ref7
  doi: 10.1145/1390156.1390164
– start-page: 964
  year: 2010
  ident: ref98
  article-title: A dirty model for multi-task learning
  publication-title: Proc 23rd Int Conf Neural Inf Process Syst
– start-page: 599
  year: 2010
  ident: ref143
  article-title: Bayesian multi-task reinforcement learning
  publication-title: Proc Int Conf Mach Learn
– start-page: 1585
  year: 2005
  ident: ref43
  article-title: Learning multiple related tasks using latent independent component analysis
  publication-title: Proc Int Conf Neural Inf Process
– ident: ref55
  doi: 10.1145/1273496.1273630
– start-page: 1073
  year: 2015
  ident: ref39
  article-title: A probabilistic model for dirty multi-task feature selection
  publication-title: Proc Int Conf Mach Learn
– ident: ref1
  doi: 10.1023/A:1007379606734
– ident: ref237
  doi: 10.1145/2556195.2556264
– start-page: 2825
  year: 2014
  ident: ref114
  article-title: Multitask learning meets tensor factorization: Task imputation via convex optimization
  publication-title: Proc 27th Int Conf Neural Inf Process Syst
– year: 2020
  ident: ref116
  article-title: Gradient surgery for multi-task learning
  publication-title: Proc Int Conf Neural Inf Process
– ident: ref193
  doi: 10.1007/s11263-012-0582-z
– volume: 19
  start-page: 1
  year: 2018
  ident: ref260
  article-title: Local Rademacher complexity-based learning guarantees for multi-task learning
  publication-title: J Mach Learn Res
– ident: ref221
  doi: 10.1137/1.9781611974348.74
– ident: ref240
  doi: 10.1186/1471-2105-12-389
– start-page: 55
  year: 2013
  ident: ref256
  article-title: Excess risk bounds for multitask learning with trace norm regularization
  publication-title: Proc Annu Conf Learn Theory
SSID ssj0008781
Score 2.7596405
SecondaryResourceType review_article
Snippet Multi-Task Learning (MTL) is a learning paradigm in machine learning and its aim is to leverage useful information contained in multiple related tasks to help...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5586
SubjectTerms Algorithms
artificial intelligence
Classification algorithms
Clustering
Cognitive tasks
Computational modeling
Data models
Machine learning
Modelling
Multi-task learning
Performance enhancement
Supervised learning
Task analysis
Training
Transfer learning
Title A Survey on Multi-Task Learning
URI https://ieeexplore.ieee.org/document/9392366
https://www.proquest.com/docview/2734385688
Volume 34
WOSCitedRecordID wos000880645200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2191
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008781
  issn: 1041-4347
  databaseCode: RIE
  dateStart: 19890101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH5sw4MenG6K06k9eBK7pU3TJsehG4IwBCfsVvKrIkon-wX-9yZZVgRF8NZDAuXLe3n9mrzvA7hColBFTESYUK6shRkPWRFZ1X3OTfhoK8nuzCay8ZhOp-yxBjdVL4zW2l0-0z376M7y1Uyu7K-yPjPFHKdpHepZlm16tapdl2bOkNSwC8OJcJL5E8wIsf7k4W5omGAc9WyAx1t_LF-DnKnKj53YlZdR838vdgD7_jMyGGzW_RBqumxBc2vREPiMbcHeN73BNlwOgqfVfK0_g1kZuNbbcMIXb4EXWX05gufRcHJ7H3qHhFCaMr0MJStSqpWmkimGJMIEKyJSmjEhuVQiQVqbnCtSlggpk0ywSDMkCNcsLnDM8TE0ylmpTyBQMeUEE02JMOgVlsYlVEkpGGWRkkkH0BazXHr5cOti8Z47GoFYbmHOLcy5h7kD19WUj412xl-D2xbXaqCHtAPd7cLkPrsWuZXkwZSklJ7-PusMdmPbpuCunXShsZyv9DnsyPXydTG_cIHzBYTnvcA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dS8MwFL3MKagPTjfF6XR98Ens1o-kTR6Hbkw2h2CFvZV8VUTpZF_gv7fJsiEogm99SKCc3Jvb0-SeA3Dl8UxmAeYuIkxqCzPm0szXqvuMFeGjtCS7MZuIRyMyHtPHEtxsemGUUubymWrpR3OWLydioX-VtWlRzMMo2oJtjFDgr7q1NvsuiY0lacEvClYUotieYfoebSeDu27BBQO_pUM8WDtk2SpkbFV-7MWmwPQq_3u1QziwH5JOZ7XyR1BSeRUqa5MGx-ZsFfa_KQ7WoNlxnhbTpfp0Jrljmm_dhM3eHCuz-nIMz71uctt3rUeCK4pCPXcFzSKipCKCSuoJL8ShxDwiMeWCCcmRp1SRdVlEERcCxZz6inocM0WDLAxYeALlfJKrU3BkQBgOsSKYF-hlmsghIoXglFBfClQHb41ZKqyAuPaxeE8NkfBoqmFONcyphbkO15spHyv1jL8G1zSum4EW0jo01guT2vyapVqUJyQ4IuTs91lN2O0nD8N0eD8anMNeoJsWzCWUBpTn04W6gB2xnL_OppcmiL4Ak5rBBw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Survey+on+Multi-Task+Learning&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Zhang%2C+Yu&rft.au=Yang%2C+Qiang&rft.date=2022-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1041-4347&rft.eissn=1558-2191&rft.volume=34&rft.issue=12&rft.spage=5586&rft_id=info:doi/10.1109%2FTKDE.2021.3070203&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon