GRP-HEFT: A Budget-Constrained Resource Provisioning Scheme for Workflow Scheduling in IaaS Clouds

In Infrastructure as a Service (IaaS) Clouds, users are charged to utilize cloud services according to a pay-per-use model. If users intend to run their workflow applications on cloud resources within a specific budget, they have to adjust their demands for cloud resources with respect to this budge...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on parallel and distributed systems Vol. 31; no. 6; pp. 1239 - 1254
Main Authors: Faragardi, Hamid Reza, Saleh Sedghpour, Mohammad Reza, Fazliahmadi, Saber, Fahringer, Thomas, Rasouli, Nayereh
Format: Journal Article
Language:English
Published: New York IEEE 01.06.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1045-9219, 1558-2183
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In Infrastructure as a Service (IaaS) Clouds, users are charged to utilize cloud services according to a pay-per-use model. If users intend to run their workflow applications on cloud resources within a specific budget, they have to adjust their demands for cloud resources with respect to this budget. Although several scheduling approaches have introduced solutions to optimize the makespan of workflows on a set of heterogeneous IaaS cloud resources within a certain budget, the hourly-based cost model of some well-known cloud providers (e.g., Amazon EC2 Cloud) can easily lead to a higher makespan and some schedulers may not find any feasible solution. In this article, we propose a novel resource provisioning mechanism and a workflow scheduling algorithm, named Greedy Resource Provisioning and modified HEFT (GRP-HEFT), for minimizing the makespan of a given workflow subject to a budget constraint for the hourly-based cost model of modern IaaS clouds. As a resource provisioning mechanism, we propose a greedy algorithm which lists the instance types according to their efficiency rate. For our scheduler, we modified the HEFT algorithm to consider a budget limit. GRP-HEFT is compared against state-of-the-art workflow scheduling techniques, including MOACS (MultiObjective Ant Colony System), PSO (Particle Swarm Optimization), and GA (Genetic Algorithm). The experimental results demonstrate that GRP-HEFT outperforms GA, PSO, and MOACS for several well-known scientific workflow applications for different problem sizes on average by 13.64, 19.77, and 11.69 percent, respectively. Also in terms of time complexity, GRP-HEFT outperforms GA, PSO and MOACS.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1045-9219
1558-2183
DOI:10.1109/TPDS.2019.2961098