GRP-HEFT: A Budget-Constrained Resource Provisioning Scheme for Workflow Scheduling in IaaS Clouds
In Infrastructure as a Service (IaaS) Clouds, users are charged to utilize cloud services according to a pay-per-use model. If users intend to run their workflow applications on cloud resources within a specific budget, they have to adjust their demands for cloud resources with respect to this budge...
Uložené v:
| Vydané v: | IEEE transactions on parallel and distributed systems Ročník 31; číslo 6; s. 1239 - 1254 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
01.06.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 1045-9219, 1558-2183 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | In Infrastructure as a Service (IaaS) Clouds, users are charged to utilize cloud services according to a pay-per-use model. If users intend to run their workflow applications on cloud resources within a specific budget, they have to adjust their demands for cloud resources with respect to this budget. Although several scheduling approaches have introduced solutions to optimize the makespan of workflows on a set of heterogeneous IaaS cloud resources within a certain budget, the hourly-based cost model of some well-known cloud providers (e.g., Amazon EC2 Cloud) can easily lead to a higher makespan and some schedulers may not find any feasible solution. In this article, we propose a novel resource provisioning mechanism and a workflow scheduling algorithm, named Greedy Resource Provisioning and modified HEFT (GRP-HEFT), for minimizing the makespan of a given workflow subject to a budget constraint for the hourly-based cost model of modern IaaS clouds. As a resource provisioning mechanism, we propose a greedy algorithm which lists the instance types according to their efficiency rate. For our scheduler, we modified the HEFT algorithm to consider a budget limit. GRP-HEFT is compared against state-of-the-art workflow scheduling techniques, including MOACS (MultiObjective Ant Colony System), PSO (Particle Swarm Optimization), and GA (Genetic Algorithm). The experimental results demonstrate that GRP-HEFT outperforms GA, PSO, and MOACS for several well-known scientific workflow applications for different problem sizes on average by 13.64, 19.77, and 11.69 percent, respectively. Also in terms of time complexity, GRP-HEFT outperforms GA, PSO and MOACS. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1045-9219 1558-2183 |
| DOI: | 10.1109/TPDS.2019.2961098 |