CNN-Enhanced Graph Convolutional Network With Pixel- and Superpixel-Level Feature Fusion for Hyperspectral Image Classification

Recently, the graph convolutional network (GCN) has drawn increasing attention in the hyperspectral image (HSI) classification. Compared with the convolutional neural network (CNN) with fixed square kernels, GCN can explicitly utilize the correlation between adjacent land covers and conduct flexible...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on geoscience and remote sensing Ročník 59; číslo 10; s. 8657 - 8671
Hlavní autoři: Liu, Qichao, Xiao, Liang, Yang, Jingxiang, Wei, Zhihui
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.10.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0196-2892, 1558-0644
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Recently, the graph convolutional network (GCN) has drawn increasing attention in the hyperspectral image (HSI) classification. Compared with the convolutional neural network (CNN) with fixed square kernels, GCN can explicitly utilize the correlation between adjacent land covers and conduct flexible convolution on arbitrarily irregular image regions; hence, the HSI spatial contextual structure can be better modeled. However, to reduce the computational complexity and promote the semantic structure learning of land covers, GCN usually works on superpixel-based nodes rather than pixel-based nodes; thus, the pixel-level spectral-spatial features cannot be captured. To fully leverage the advantages of the CNN and GCN, we propose a heterogeneous deep network called CNN-enhanced GCN (CEGCN), in which CNN and GCN branches perform feature learning on small-scale regular regions and large-scale irregular regions, and generate complementary spectral-spatial features at pixel and superpixel levels, respectively. To alleviate the structural incompatibility of the data representation between the Euclidean data-oriented CNN and non-Euclidean data-oriented GCN, we propose the graph encoder and decoder to propagate features between image pixels and graph nodes, thus enabling the CNN and GCN to collaborate in a single network. In contrast to other GCN-based methods that encode HSI into a graph during preprocessing, we integrate the graph encoding process into the network and learn edge weights from training data, which can promote the node feature learning and make the graph more adaptive to HSI content. Extensive experiments on three data sets demonstrate that the proposed CEGCN is both qualitatively and quantitatively competitive compared with other state-of-the-art methods.
AbstractList Recently, the graph convolutional network (GCN) has drawn increasing attention in the hyperspectral image (HSI) classification. Compared with the convolutional neural network (CNN) with fixed square kernels, GCN can explicitly utilize the correlation between adjacent land covers and conduct flexible convolution on arbitrarily irregular image regions; hence, the HSI spatial contextual structure can be better modeled. However, to reduce the computational complexity and promote the semantic structure learning of land covers, GCN usually works on superpixel-based nodes rather than pixel-based nodes; thus, the pixel-level spectral–spatial features cannot be captured. To fully leverage the advantages of the CNN and GCN, we propose a heterogeneous deep network called CNN-enhanced GCN (CEGCN), in which CNN and GCN branches perform feature learning on small-scale regular regions and large-scale irregular regions, and generate complementary spectral–spatial features at pixel and superpixel levels, respectively. To alleviate the structural incompatibility of the data representation between the Euclidean data-oriented CNN and non-Euclidean data-oriented GCN, we propose the graph encoder and decoder to propagate features between image pixels and graph nodes, thus enabling the CNN and GCN to collaborate in a single network. In contrast to other GCN-based methods that encode HSI into a graph during preprocessing, we integrate the graph encoding process into the network and learn edge weights from training data, which can promote the node feature learning and make the graph more adaptive to HSI content. Extensive experiments on three data sets demonstrate that the proposed CEGCN is both qualitatively and quantitatively competitive compared with other state-of-the-art methods.
Author Xiao, Liang
Yang, Jingxiang
Liu, Qichao
Wei, Zhihui
Author_xml – sequence: 1
  givenname: Qichao
  orcidid: 0000-0003-0134-9450
  surname: Liu
  fullname: Liu, Qichao
  email: qc.l@njust.edu.cn
  organization: School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
– sequence: 2
  givenname: Liang
  orcidid: 0000-0003-0178-9384
  surname: Xiao
  fullname: Xiao, Liang
  email: xiaoliang@mail.njust.edu.cn
  organization: School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
– sequence: 3
  givenname: Jingxiang
  orcidid: 0000-0002-1234-0614
  surname: Yang
  fullname: Yang, Jingxiang
  email: yang123jx@njust.edu.cn
  organization: School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
– sequence: 4
  givenname: Zhihui
  orcidid: 0000-0002-4841-6051
  surname: Wei
  fullname: Wei, Zhihui
  email: gswei@njust.edu.cn
  organization: School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
BookMark eNp9kMtOwzAQRS0EEqXwAYiNJdYpfsRxskQRLUhVQTzEMjLOmBpCHOyEx4pfx20RCxasRjO6Z2bu3UPbrWsBoUNKJpSS4uR2dn0zYYSRCSdc8oxuoREVIk9IlqbbaERokSUsL9gu2gvhiRCaCipH6KtcLJKzdqlaDTWeedUtcenaN9cMvXWtavAC-nfnn_G97Zf4yn5Ak2DV1vhm6MB3634Ob9DgKah-8ICnQ4gkNs7j88-oCR3o3sdNFy_qEXDZqBCssVqtDuyjHaOaAAc_dYzupme35Xkyv5xdlKfzRLOC98lDpkUtGeSUK6ipMlIIUXNiGKEP3DCpmZa6gOg2EznVcSBMmhmgplYECB-j483ezrvXAUJfPbnBR3-hYkKKIidCplElNyrtXQgeTKVtv_4zGrBNRUm1SrtapV2t0q5-0o4k_UN23r4o__kvc7RhLAD86guW5aks-DceuI6L
CODEN IGRSD2
CitedBy_id crossref_primary_10_1007_s11517_025_03303_3
crossref_primary_10_1016_j_dsp_2024_104965
crossref_primary_10_1109_TGRS_2024_3516772
crossref_primary_10_3390_rs15071803
crossref_primary_10_1109_LGRS_2024_3379232
crossref_primary_10_1109_JSTARS_2021_3100400
crossref_primary_10_1016_j_inffus_2025_103285
crossref_primary_10_1016_j_jag_2022_103005
crossref_primary_10_1109_JSTARS_2025_3548571
crossref_primary_10_1109_TGRS_2023_3294227
crossref_primary_10_1109_TGRS_2025_3598375
crossref_primary_10_1109_JSTARS_2023_3241157
crossref_primary_10_3390_jmse13030439
crossref_primary_10_1016_j_neucom_2023_126487
crossref_primary_10_1109_LGRS_2024_3401133
crossref_primary_10_1109_JSTARS_2022_3187009
crossref_primary_10_1109_JSTARS_2024_3468949
crossref_primary_10_1109_TMM_2025_3535398
crossref_primary_10_1109_TGRS_2023_3327109
crossref_primary_10_1109_TGRS_2025_3608942
crossref_primary_10_1038_s41598_025_90228_4
crossref_primary_10_1109_TGRS_2022_3203488
crossref_primary_10_3390_rs16101747
crossref_primary_10_1109_JSTARS_2024_3358298
crossref_primary_10_1016_j_eswa_2024_125106
crossref_primary_10_1109_TGRS_2024_3415965
crossref_primary_10_3390_rs15174235
crossref_primary_10_1109_LGRS_2023_3299281
crossref_primary_10_1109_TIP_2023_3287738
crossref_primary_10_1109_JSTARS_2025_3580751
crossref_primary_10_1109_TGRS_2023_3253248
crossref_primary_10_1109_JSTARS_2024_3450856
crossref_primary_10_3390_drones8040142
crossref_primary_10_1109_TIP_2024_3422881
crossref_primary_10_1109_TGRS_2025_3566672
crossref_primary_10_1109_TGRS_2023_3307609
crossref_primary_10_3390_ijerph191710707
crossref_primary_10_1016_j_neucom_2024_128271
crossref_primary_10_1109_JSTARS_2024_3486283
crossref_primary_10_1109_TGRS_2023_3307604
crossref_primary_10_1109_LGRS_2023_3348093
crossref_primary_10_1016_j_compag_2024_109838
crossref_primary_10_1109_JSTARS_2025_3580769
crossref_primary_10_3390_electronics13163271
crossref_primary_10_1109_TGRS_2023_3292142
crossref_primary_10_1109_TGRS_2024_3350573
crossref_primary_10_1109_LGRS_2023_3316732
crossref_primary_10_1109_TGRS_2024_3505539
crossref_primary_10_1109_TASE_2025_3541339
crossref_primary_10_1109_TGRS_2024_3357524
crossref_primary_10_1109_TGRS_2025_3576200
crossref_primary_10_1109_LGRS_2022_3167535
crossref_primary_10_1364_OL_573886
crossref_primary_10_1109_TGRS_2023_3314616
crossref_primary_10_1109_TGRS_2024_3409378
crossref_primary_10_3390_rs16050895
crossref_primary_10_3390_s23135795
crossref_primary_10_1109_TGRS_2023_3339247
crossref_primary_10_1109_JSTARS_2025_3538759
crossref_primary_10_1142_S0219467825500196
crossref_primary_10_3390_rs16142636
crossref_primary_10_3390_ijgi12120505
crossref_primary_10_3390_rs16193741
crossref_primary_10_1109_TCSVT_2024_3379291
crossref_primary_10_1080_01431161_2024_2398822
crossref_primary_10_1109_JSTARS_2023_3339238
crossref_primary_10_3390_math12132020
crossref_primary_10_1109_TGRS_2023_3333005
crossref_primary_10_1109_TMI_2024_3501365
crossref_primary_10_1109_JSTARS_2021_3121334
crossref_primary_10_1007_s12524_025_02275_z
crossref_primary_10_1109_TGRS_2024_3442784
crossref_primary_10_1109_TNNLS_2022_3212985
crossref_primary_10_1109_JSTARS_2022_3195639
crossref_primary_10_1109_TGRS_2024_3419790
crossref_primary_10_1109_TGRS_2023_3280183
crossref_primary_10_3390_foods14142488
crossref_primary_10_1016_j_asoc_2025_112723
crossref_primary_10_1109_TGRS_2022_3212418
crossref_primary_10_1109_TGRS_2024_3390575
crossref_primary_10_1109_LGRS_2022_3192832
crossref_primary_10_1016_j_eswa_2025_127046
crossref_primary_10_1063_5_0222796
crossref_primary_10_1109_TGRS_2025_3584561
crossref_primary_10_1109_TGRS_2021_3135084
crossref_primary_10_1109_TGRS_2024_3431680
crossref_primary_10_1109_TNNLS_2022_3158280
crossref_primary_10_1109_TGRS_2023_3304311
crossref_primary_10_1109_LGRS_2021_3069987
crossref_primary_10_1080_17538947_2024_2353110
crossref_primary_10_3390_rs15235483
crossref_primary_10_1109_TGRS_2023_3349069
crossref_primary_10_1088_1742_6596_3055_1_012034
crossref_primary_10_1109_TGRS_2023_3239411
crossref_primary_10_1109_TCSVT_2025_3525734
crossref_primary_10_3390_rs16162942
crossref_primary_10_1109_TGRS_2024_3467088
crossref_primary_10_1109_TGRS_2024_3412131
crossref_primary_10_1111_phor_12493
crossref_primary_10_1016_j_eswa_2025_128386
crossref_primary_10_1016_j_neunet_2023_08_059
crossref_primary_10_3390_rs15041001
crossref_primary_10_1016_j_infrared_2024_105425
crossref_primary_10_1109_TGRS_2023_3270204
crossref_primary_10_3390_rs17081422
crossref_primary_10_1109_TGRS_2022_3163326
crossref_primary_10_1109_JSTARS_2024_3392448
crossref_primary_10_1109_TIM_2023_3271713
crossref_primary_10_3390_rs16050844
crossref_primary_10_1109_TGRS_2023_3257369
crossref_primary_10_1109_TGRS_2024_3386256
crossref_primary_10_1109_TGRS_2024_3440271
crossref_primary_10_1109_TGRS_2024_3492387
crossref_primary_10_1109_TASE_2025_3557234
crossref_primary_10_1109_TNNLS_2023_3345734
crossref_primary_10_1109_TCSVT_2022_3227172
crossref_primary_10_1080_01431161_2024_2384098
crossref_primary_10_3390_rs15153900
crossref_primary_10_1016_j_eswa_2024_126026
crossref_primary_10_1109_TCSVT_2023_3343881
crossref_primary_10_1109_TGRS_2024_3356510
crossref_primary_10_1016_j_cja_2025_103740
crossref_primary_10_1016_j_patcog_2024_110959
crossref_primary_10_1109_JSTARS_2024_3355290
crossref_primary_10_1016_j_dsp_2024_104392
crossref_primary_10_1109_ACCESS_2025_3569874
crossref_primary_10_1109_ACCESS_2025_3543122
crossref_primary_10_3390_rs16173155
crossref_primary_10_1109_TGRS_2024_3511614
crossref_primary_10_1109_JSTARS_2024_3403863
crossref_primary_10_1109_ACCESS_2022_3164691
crossref_primary_10_3390_rs17081461
crossref_primary_10_1016_j_jer_2024_08_006
crossref_primary_10_1109_TGRS_2021_3075546
crossref_primary_10_1109_TGRS_2024_3476327
crossref_primary_10_1016_j_infrared_2024_105401
crossref_primary_10_3390_rs15174255
crossref_primary_10_1016_j_jag_2023_103614
crossref_primary_10_1109_TGRS_2022_3160513
crossref_primary_10_3390_fi16050161
crossref_primary_10_1109_LGRS_2024_3398439
crossref_primary_10_1109_TGRS_2024_3427769
crossref_primary_10_1109_TGRS_2023_3240721
crossref_primary_10_1016_j_jpdc_2025_105140
crossref_primary_10_1109_ACCESS_2022_3220776
crossref_primary_10_1109_JSTARS_2023_3308037
crossref_primary_10_1109_TGRS_2024_3386718
crossref_primary_10_1109_JSTARS_2024_3355071
crossref_primary_10_1016_j_engappai_2024_108669
crossref_primary_10_1016_j_jag_2023_103485
crossref_primary_10_1109_LGRS_2023_3316796
crossref_primary_10_1109_TAES_2024_3388373
crossref_primary_10_1016_j_eswa_2025_128063
crossref_primary_10_1109_TGRS_2024_3487296
crossref_primary_10_1109_TGRS_2022_3220409
crossref_primary_10_3390_app12136797
crossref_primary_10_1007_s11227_025_07445_x
crossref_primary_10_1109_TIP_2023_3270104
crossref_primary_10_1080_07038992_2024_2333424
crossref_primary_10_1109_JSTARS_2024_3454150
crossref_primary_10_1109_TGRS_2023_3242990
crossref_primary_10_1016_j_jag_2024_103897
crossref_primary_10_1007_s11004_024_10158_1
crossref_primary_10_3390_rs14092243
crossref_primary_10_1109_JSTARS_2024_3367626
crossref_primary_10_1109_TGRS_2022_3165025
crossref_primary_10_1109_JSTARS_2025_3575207
crossref_primary_10_1109_TGRS_2023_3310521
crossref_primary_10_1007_s00521_023_08935_w
crossref_primary_10_1109_TGRS_2024_3408330
crossref_primary_10_1109_TIM_2023_3284941
crossref_primary_10_3390_rs16112029
crossref_primary_10_1016_j_engappai_2023_107070
crossref_primary_10_3390_rs14030681
crossref_primary_10_1109_TGRS_2024_3387420
crossref_primary_10_1109_TGRS_2023_3325459
crossref_primary_10_1109_TGRS_2022_3150349
crossref_primary_10_1007_s00530_022_00993_9
crossref_primary_10_1109_TGRS_2023_3264653
crossref_primary_10_1016_j_ins_2024_121504
crossref_primary_10_1109_TGRS_2022_3162100
crossref_primary_10_1109_TGRS_2025_3592406
crossref_primary_10_1007_s10462_025_11169_y
crossref_primary_10_1109_JSEN_2025_3592786
crossref_primary_10_1109_LGRS_2022_3178708
crossref_primary_10_1109_TGRS_2023_3322641
crossref_primary_10_1109_TGRS_2025_3566116
crossref_primary_10_1109_JSTARS_2023_3321776
crossref_primary_10_1109_TGRS_2021_3112586
crossref_primary_10_1109_JSTARS_2025_3584970
crossref_primary_10_1109_TGRS_2025_3548607
crossref_primary_10_1109_TAI_2022_3194869
crossref_primary_10_3390_app13127143
crossref_primary_10_1016_j_ins_2025_122323
crossref_primary_10_1109_TGRS_2023_3265879
crossref_primary_10_1080_22797254_2023_2271651
crossref_primary_10_1109_TCSVT_2023_3339135
crossref_primary_10_1080_01431161_2024_2408495
crossref_primary_10_1109_JBHI_2024_3495835
crossref_primary_10_1109_TGRS_2024_3439434
crossref_primary_10_3390_rs13214348
crossref_primary_10_1080_10408347_2023_2207652
crossref_primary_10_1109_TGRS_2024_3388429
crossref_primary_10_1109_TGRS_2022_3225438
crossref_primary_10_1109_TGRS_2022_3190466
crossref_primary_10_1109_TGRS_2024_3441617
crossref_primary_10_3390_rs15174170
crossref_primary_10_1080_01431161_2023_2247523
crossref_primary_10_1109_JSTARS_2025_3604753
crossref_primary_10_3390_rs14195027
crossref_primary_10_1109_JSTARS_2024_3479920
crossref_primary_10_3390_rs16173184
crossref_primary_10_1109_TGRS_2022_3184117
crossref_primary_10_1109_TGRS_2023_3327418
crossref_primary_10_1109_TGRS_2023_3304716
crossref_primary_10_1109_TGRS_2025_3572128
crossref_primary_10_3390_rs14205118
crossref_primary_10_1109_TGRS_2024_3479220
crossref_primary_10_1109_TNNLS_2023_3265560
crossref_primary_10_1109_TGRS_2025_3566616
crossref_primary_10_1109_JSTARS_2021_3135548
crossref_primary_10_1080_15592324_2023_2214765
crossref_primary_10_1007_s11082_023_06101_z
crossref_primary_10_1109_TGRS_2024_3390928
crossref_primary_10_1109_LGRS_2025_3583697
crossref_primary_10_3390_electronics12194020
crossref_primary_10_3390_s25103092
crossref_primary_10_1016_j_asoc_2023_111176
crossref_primary_10_1109_TGRS_2022_3230378
crossref_primary_10_3390_rs16214001
crossref_primary_10_1109_JSTARS_2024_3455561
crossref_primary_10_1109_LGRS_2024_3449238
crossref_primary_10_1007_s40747_022_00836_0
crossref_primary_10_1038_s40494_025_01716_9
crossref_primary_10_1109_TGRS_2024_3471616
crossref_primary_10_1016_j_eswa_2023_122202
crossref_primary_10_1109_TGRS_2022_3221534
crossref_primary_10_1109_TGRS_2025_3562261
crossref_primary_10_1016_j_eswa_2024_125672
crossref_primary_10_1109_TGRS_2023_3326231
crossref_primary_10_1016_j_eswa_2024_125665
crossref_primary_10_1117_1_JRS_18_036507
crossref_primary_10_1109_TGRS_2023_3331244
crossref_primary_10_1109_TGRS_2024_3372497
crossref_primary_10_1109_ACCESS_2025_3595997
crossref_primary_10_3390_rs16132328
crossref_primary_10_1109_TGRS_2024_3362471
crossref_primary_10_1080_14498596_2024_2350585
crossref_primary_10_1109_TGRS_2025_3553524
crossref_primary_10_1109_TGRS_2023_3325818
crossref_primary_10_1109_TGRS_2023_3343109
crossref_primary_10_3390_rs15164078
crossref_primary_10_1016_j_eswa_2025_129522
crossref_primary_10_1109_JSTARS_2021_3132394
crossref_primary_10_1109_TGRS_2023_3265388
crossref_primary_10_1109_TIP_2022_3144017
crossref_primary_10_1109_TGRS_2023_3298848
crossref_primary_10_1007_s11053_024_10413_6
crossref_primary_10_1109_TGRS_2025_3542422
crossref_primary_10_1109_JSTARS_2025_3542255
crossref_primary_10_1109_LGRS_2023_3323706
crossref_primary_10_1109_JIOT_2024_3420789
crossref_primary_10_1080_01431161_2024_2347525
crossref_primary_10_1109_TGRS_2025_3605373
crossref_primary_10_1109_TGRS_2022_3199467
crossref_primary_10_1109_TGRS_2022_3179419
crossref_primary_10_3390_bioengineering11030278
crossref_primary_10_1016_j_isprsjprs_2023_06_014
crossref_primary_10_1109_TGRS_2025_3548654
crossref_primary_10_3390_rs16060937
crossref_primary_10_1109_TGRS_2023_3324977
crossref_primary_10_1109_TGRS_2024_3475631
crossref_primary_10_1109_TGRS_2023_3322558
crossref_primary_10_1080_01431161_2024_2370501
crossref_primary_10_3389_fdgth_2025_1547208
crossref_primary_10_1016_j_jag_2025_104469
crossref_primary_10_1109_ACCESS_2022_3163535
crossref_primary_10_1016_j_bspc_2024_107050
crossref_primary_10_1109_TGRS_2025_3543861
crossref_primary_10_1007_s10489_023_04960_3
crossref_primary_10_1109_TGRS_2024_3443953
crossref_primary_10_1109_TCSVT_2022_3218284
crossref_primary_10_1109_JSTARS_2023_3265677
crossref_primary_10_1007_s11227_025_07653_5
crossref_primary_10_1109_TGRS_2024_3446666
crossref_primary_10_1109_TGRS_2024_3481875
crossref_primary_10_1109_TGRS_2025_3555967
crossref_primary_10_1109_TGRS_2023_3320146
crossref_primary_10_1109_JSTARS_2024_3476333
crossref_primary_10_1109_TGRS_2022_3169970
crossref_primary_10_1038_s41598_025_87030_7
crossref_primary_10_1109_TGRS_2024_3451457
Cites_doi 10.1109/TPAMI.2012.120
10.1109/TGRS.2007.895416
10.1109/IGARSS.2015.7326945
10.1109/ICCV.2017.89
10.3390/rs10071068
10.1080/01431160902926681
10.4314/wsa.v33i2.49049
10.1109/TGRS.2017.2698503
10.1109/TGRS.2012.2201730
10.1109/CVPR.2016.91
10.1109/TGRS.2019.2949180
10.1007/s11263-014-0744-2
10.1109/TGRS.2020.2974134
10.1109/JSTARS.2013.2262926
10.1109/TGRS.2017.2778343
10.1109/LGRS.2018.2869563
10.1109/JSTARS.2014.2329330
10.3390/rs11080963
10.1109/MSP.2012.2235192
10.1109/TGRS.2011.2176341
10.1117/1.JBO.19.1.010901
10.1109/TGRS.2010.2060550
10.1109/JSTARS.2014.2362116
10.3390/rs6065795
10.1109/TGRS.2017.2686842
10.1109/TGRS.2017.2781805
10.1109/TGRS.2014.2365676
10.3390/rs9010067
10.1109/TGRS.2015.2392755
10.3390/rs12030582
10.1016/j.patcog.2010.01.016
10.1109/MGRS.2016.2616418
10.1109/TGRS.2018.2832228
10.1016/j.patcog.2004.01.006
10.1109/TGRS.2017.2755542
10.1023/B:VISI.0000022288.19776.77
10.1007/978-3-319-95957-3_10
10.1109/TGRS.2019.2957135
10.1155/2016/3632943
10.1109/LGRS.2019.2918719
10.1109/TGRS.2017.2691906
10.1038/nature24270
10.1109/TGRS.2011.2129595
10.1109/TGRS.2014.2315209
10.1109/TGRS.2018.2866190
10.1109/TGRS.2016.2636241
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2020.3037361
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 8671
ExternalDocumentID 10_1109_TGRS_2020_3037361
9268479
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61871226; 62001226; 61571230
  funderid: 10.13039/501100001809
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 30918011104; 30920021134
  funderid: 10.13039/501100012226
– fundername: National Major Research Plan of China
  grantid: 2016YFF0103604
– fundername: Jiangsu Provincial Social Developing Project
  grantid: BE2018727
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c293t-b6c5d72e813aed1af7555d30f201b3f27c2c7c9e0646581c27c5f46fe1fda0e03
IEDL.DBID RIE
ISICitedReferencesCount 330
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000698968700048&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0196-2892
IngestDate Mon Jun 30 08:29:36 EDT 2025
Sat Nov 29 02:50:09 EST 2025
Tue Nov 18 21:28:58 EST 2025
Wed Aug 27 02:27:14 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-b6c5d72e813aed1af7555d30f201b3f27c2c7c9e0646581c27c5f46fe1fda0e03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0134-9450
0000-0002-1234-0614
0000-0002-4841-6051
0000-0003-0178-9384
PQID 2575980574
PQPubID 85465
PageCount 15
ParticipantIDs proquest_journals_2575980574
ieee_primary_9268479
crossref_primary_10_1109_TGRS_2020_3037361
crossref_citationtrail_10_1109_TGRS_2020_3037361
PublicationCentury 2000
PublicationDate 2021-10-01
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref53
ref55
ref11
ref10
ref17
ref16
ref19
ref18
silver (ref24) 2017; 550
maas (ref50) 2013; 30
ying (ref30) 2017; 9
jampani (ref46) 2018
chen (ref6) 2014; 6
ref45
ref47
ref42
ref41
ref43
ref8
ref7
devlin (ref23) 2019
ref9
ref4
ref3
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref33
ref32
ref2
ref1
ref39
ref38
kipf (ref49) 2017
liu (ref44) 2020; 48
vedaldi (ref52) 2008
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
li (ref54) 2015
kingma (ref51) 2015
defferrard (ref48) 2016
References_xml – ident: ref45
  doi: 10.1109/TPAMI.2012.120
– ident: ref17
  doi: 10.1109/TGRS.2007.895416
– volume: 48
  start-page: 751
  year: 2020
  ident: ref44
  article-title: SSCDenseNet: A spectral-spatial convolutional dense network for hyperspectral image classification
  publication-title: Acta Electronica Sinica
– ident: ref25
  doi: 10.1109/IGARSS.2015.7326945
– ident: ref40
  doi: 10.1109/ICCV.2017.89
– start-page: 1
  year: 2017
  ident: ref49
  article-title: Semi-supervised classification with graph convolutional networks
  publication-title: Proc Int Conf Learn Represent (ICLR)
– ident: ref34
  doi: 10.3390/rs10071068
– volume: 30
  start-page: 3
  year: 2013
  ident: ref50
  article-title: Rectifier nonlinearities improve neural network acoustic models
  publication-title: Proc Int Conf Mach Learn (ICML)
– ident: ref4
  doi: 10.1080/01431160902926681
– start-page: 1
  year: 2015
  ident: ref51
  article-title: Adam: A method for stochastic optimization
  publication-title: Proc Int Conf Learn Represent (ICLR)
– ident: ref2
  doi: 10.4314/wsa.v33i2.49049
– ident: ref26
  doi: 10.1109/TGRS.2017.2698503
– ident: ref11
  doi: 10.1109/TGRS.2012.2201730
– ident: ref22
  doi: 10.1109/CVPR.2016.91
– ident: ref42
  doi: 10.1109/TGRS.2019.2949180
– ident: ref55
  doi: 10.1007/s11263-014-0744-2
– ident: ref39
  doi: 10.1109/TGRS.2020.2974134
– start-page: 1356
  year: 2015
  ident: ref54
  article-title: Superpixel segmentation using linear spectral clustering
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit (CVPR)
– ident: ref7
  doi: 10.1109/JSTARS.2013.2262926
– ident: ref32
  doi: 10.1109/TGRS.2017.2778343
– ident: ref41
  doi: 10.1109/LGRS.2018.2869563
– ident: ref29
  doi: 10.1109/JSTARS.2014.2329330
– ident: ref37
  doi: 10.3390/rs11080963
– ident: ref47
  doi: 10.1109/MSP.2012.2235192
– start-page: 705
  year: 2008
  ident: ref52
  article-title: Quick shift and kernel methods for mode seeking
  publication-title: Proc Eur Conf Comput Vis (ECCV)
– ident: ref8
  doi: 10.1109/TGRS.2011.2176341
– start-page: 352
  year: 2018
  ident: ref46
  article-title: Superpixel sampling networks
  publication-title: Proc Eur Conf Comput Vis (ECCV)
– ident: ref3
  doi: 10.1117/1.JBO.19.1.010901
– ident: ref5
  doi: 10.1109/TGRS.2010.2060550
– start-page: 3844
  year: 2016
  ident: ref48
  article-title: Convolutional neural networks on graphs with fast localized spectral filtering
  publication-title: Proc Adv Neural Inf Process Syst (NIPS)
– ident: ref12
  doi: 10.1109/JSTARS.2014.2362116
– volume: 6
  start-page: 5795
  year: 2014
  ident: ref6
  article-title: Spectral-spatial classification of hyperspectral image based on kernel extreme learning machine
  publication-title: Remote Sens
  doi: 10.3390/rs6065795
– ident: ref13
  doi: 10.1109/TGRS.2017.2686842
– ident: ref14
  doi: 10.1109/TGRS.2017.2781805
– ident: ref18
  doi: 10.1109/TGRS.2014.2365676
– volume: 9
  start-page: 67
  year: 2017
  ident: ref30
  article-title: Spectral-spatial classification of hyperspectral imagery with 3D convolutional neural network
  publication-title: Remote Sens
  doi: 10.3390/rs9010067
– ident: ref19
  doi: 10.1109/TGRS.2015.2392755
– ident: ref38
  doi: 10.3390/rs12030582
– ident: ref21
  doi: 10.1016/j.patcog.2010.01.016
– ident: ref1
  doi: 10.1109/MGRS.2016.2616418
– ident: ref35
  doi: 10.1109/TGRS.2018.2832228
– ident: ref20
  doi: 10.1016/j.patcog.2004.01.006
– ident: ref33
  doi: 10.1109/TGRS.2017.2755542
– ident: ref53
  doi: 10.1023/B:VISI.0000022288.19776.77
– ident: ref31
  doi: 10.1007/978-3-319-95957-3_10
– start-page: 4171
  year: 2019
  ident: ref23
  article-title: BERT: Pre-training of deep bidirectional transformers for language understanding
  publication-title: Proc North Amer Chapter Assoc Comput Linguistics (NAACL)
– ident: ref16
  doi: 10.1109/TGRS.2019.2957135
– ident: ref36
  doi: 10.1155/2016/3632943
– ident: ref27
  doi: 10.1109/LGRS.2019.2918719
– ident: ref43
  doi: 10.1109/TGRS.2017.2691906
– volume: 550
  start-page: 354
  year: 2017
  ident: ref24
  article-title: Mastering the game of go without human knowledge
  publication-title: Nature
  doi: 10.1038/nature24270
– ident: ref9
  doi: 10.1109/TGRS.2011.2129595
– ident: ref10
  doi: 10.1109/TGRS.2014.2315209
– ident: ref15
  doi: 10.1109/TGRS.2018.2866190
– ident: ref28
  doi: 10.1109/TGRS.2016.2636241
SSID ssj0014517
Score 2.7112477
Snippet Recently, the graph convolutional network (GCN) has drawn increasing attention in the hyperspectral image (HSI) classification. Compared with the convolutional...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 8657
SubjectTerms Artificial neural networks
Classification
Coders
Computational modeling
Computer applications
Convolution
Convolutional neural network (CNN)
Data
Data processing
Decoding
Deep learning
Feature extraction
feature fusion
graph convolutional network (GCN)
graph encoder and decoder
hyperspectral image (HSI) classification
Hyperspectral imaging
Image classification
Incompatibility
Kernel
Learning
Machine learning
Methods
Neural networks
Nodes
Pixels
Regions
Training
Training data
Title CNN-Enhanced Graph Convolutional Network With Pixel- and Superpixel-Level Feature Fusion for Hyperspectral Image Classification
URI https://ieeexplore.ieee.org/document/9268479
https://www.proquest.com/docview/2575980574
Volume 59
WOSCitedRecordID wos000698968700048&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1558-0644
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014517
  issn: 0196-2892
  databaseCode: RIE
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Na9wwEB2S0EJz6EfS0G3TokNPpWosy7LsY1mySSGY0KRtbsaWRmQh9S7edcitf70jWVlaWgq92UYShqePN5o3MwBvrZKtbUTGXeaQZ4iKl046TuRDYtMktg1VFL6e6aoqrq7K8y14v4mFQcQgPsMP_jH48u3CDP6q7Kj0qUl0uQ3bWudjrNbGY5ApEUOjc05GRBo9mCIpjy5PPl-QJZiSgZpILXPx2xkUiqr8sROH42X25P9-7Ck8jjSSfRxxfwZb2O3B7i_JBffgYRB3mtU-_JhWFT_uroOzn534FNVsuuhu46yjcapRDM6-zdfX7Hx-hzecNZ1lF8MS-2V4P_PqIuYZ49Ajmw3-lo0R42WnZMmOAZs9jfTpO21QLJTa9CKkgPtz-DI7vpye8lh4gRs6_de8zY2yOsVCyAataJxWSlmZOGILrXSpNqnRpkSiM0RghKEPymW5Q-Fsk2AiD2CnW3T4AphGlaLRZZshGV5tUagCcyeUI2LQtspOILmHojYxK7kvjnFTB-skKWuPXu3RqyN6E3i36bIcU3L8q_G-h2vTMCI1gcN7vOu4aFd16ouVFkRgs5d_7_UKHqVe0hK0fIews-4HfA0PzO16vurfhPn4E3Rw30k
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VAgIOPFoQCwV84IQw9TOPI1p1uxVLVNEFeosSe6yuVLKr7Kbixl_HdtIVCITELYlsK9Lnxzeeb2YAXlsta1txRZ1ySBWiprmTjnryIbGqmK1jFYUvs7QosvPz_HQH3m5jYRAxis_wXXiMvny7NF24KjvMQ2qSNL8BN7VSgvXRWlufgdJ8CI5OqDcjxODD5Cw_nB9_OvO2oPAmKpOpTPhvp1Asq_LHXhwPmMmD__u1h3B_IJLkfY_8I9jBZg_u_ZJecA9uR3mnWe_Dj3FR0KPmIrr7yXFIUk3Gy-ZqmHd-nKKXg5Ovi80FOV18x0tKqsaSs26F7Sq-z4K-iATO2LVIJl24ZyOe85Kpt2X7kM3Wj3TyzW9RJBbbDDKkiPxj-Dw5mo-ndCi9QI0__ze0Toy2qcCMywotr1yqtbaSOc8XaulEaoRJTY6e0HgKw43_oJ1KHHJnK4ZMPoHdZtngUyApaoEmzWuF3vSqs0xnmDiunacGda3tCNg1FKUZ8pKH8hiXZbRPWF4G9MqAXjmgN4I32y6rPinHvxrvB7i2DQekRnBwjXc5LNt1KUK50sxTWPXs771ewZ3p_OOsnJ0UH57DXREELlHZdwC7m7bDF3DLXG0W6_ZlnJs_ATbw4pA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CNN-Enhanced+Graph+Convolutional+Network+With+Pixel-+and+Superpixel-Level+Feature+Fusion+for+Hyperspectral+Image+Classification&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Liu%2C+Qichao&rft.au=Xiao%2C+Liang&rft.au=Yang%2C+Jingxiang&rft.au=Wei%2C+Zhihui&rft.date=2021-10-01&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=59&rft.issue=10&rft.spage=8657&rft.epage=8671&rft_id=info:doi/10.1109%2FTGRS.2020.3037361&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2020_3037361
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon