A Globally Optimal Bilinear Programming Approach to the Design of Approximate Hilbert Pairs of Orthonormal Wavelet Bases

It is understood that the Hilbert transform pairs of orthonormal wavelet bases can only be realized approximately by the scaling filters of conjugate quadrature filter (CQF) banks. In this paper, the approximate FIR realization of the Hilbert transform pairs is formulated as an optimization problem...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on signal processing Ročník 58; číslo 1; s. 233 - 241
Hlavní autori: Wang, Jiang, Zhang, Jian Qiu
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York, NY IEEE 01.01.2010
Institute of Electrical and Electronics Engineers
Predmet:
ISSN:1053-587X, 1941-0476
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract It is understood that the Hilbert transform pairs of orthonormal wavelet bases can only be realized approximately by the scaling filters of conjugate quadrature filter (CQF) banks. In this paper, the approximate FIR realization of the Hilbert transform pairs is formulated as an optimization problem in the sense of the lp ( p =1, 2, or infinite) norm minimization on the approximate error of the magnitude and phase conditions of the scaling filters. The orthogonality and regularity conditions of the CQF bank pairs are taken as the constraints of such an optimization problem. Whereafter the branch and bound technique is employed to obtain the globally optimal solution of the resulting bilinear program optimization problem. Since the orthogonality and regularity conditions are explicitly taken as the constraints of our optimization problem, the attained solution is an approximate Hilbert transform pair satisfying these conditions exactly. Some orthogonal wavelet bases designed herein demonstrate that our design scheme is superior to those that have been reported in the literature. Moreover, the designed orthogonal wavelet bases show that minimizing the l 1 norm of the approximate error should be advocated for obtaining better approximated Hilbert pairs.
AbstractList It is understood that the Hilbert transform pairs of orthonormal wavelet bases can only be realized approximately by the scaling filters of conjugate quadrature filter (CQF) banks. In this paper, the approximate FIR realization of the Hilbert transform pairs is formulated as an optimization problem in the sense of the lp ( p =1, 2, or infinite) norm minimization on the approximate error of the magnitude and phase conditions of the scaling filters. The orthogonality and regularity conditions of the CQF bank pairs are taken as the constraints of such an optimization problem. Whereafter the branch and bound technique is employed to obtain the globally optimal solution of the resulting bilinear program optimization problem. Since the orthogonality and regularity conditions are explicitly taken as the constraints of our optimization problem, the attained solution is an approximate Hilbert transform pair satisfying these conditions exactly. Some orthogonal wavelet bases designed herein demonstrate that our design scheme is superior to those that have been reported in the literature. Moreover, the designed orthogonal wavelet bases show that minimizing the l 1 norm of the approximate error should be advocated for obtaining better approximated Hilbert pairs.
Author Jian Qiu Zhang
Jiang Wang
Author_xml – sequence: 1
  givenname: Jiang
  surname: Wang
  fullname: Wang, Jiang
– sequence: 2
  givenname: Jian Qiu
  surname: Zhang
  fullname: Zhang, Jian Qiu
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22492321$$DView record in Pascal Francis
BookMark eNp9kEtrWzEQhUVxIM5jH-hGmy5votd9aGmnzQMMNiQh2V3GyshWka8ukijJv4-Mky666GZmYM53OJwTMhnCgIRccHbJOdNXjw-rS8GYLkPoVtTfyJRrxSum2mZSblbLqu7al2NyktJvxrhSupmStxm99WEN3r_T5ZjdDjydO-8GhEhXMWwi7HZu2NDZOMYAZktzoHmL9CcmtxlosIfPWyEz0jvn1xgzXYGLaf9cxrwNQ4h732f4gx4znUPCdEaOLPiE55_7lDzd_Hq8vqsWy9v769miMkLLXIGqrRZ1J5iGkhmaDqRVurVadwyYaaRsW3hdK27QrlutalRouW214Ny8CnlKfhx8R0gGvI0wGJf6MZbA8b0XQmkhBS-65qAzMaQU0fbGZcguDDmC8z1n_b7nvvTc73vuP3suIPsH_PL-D_L9gDhE_Cuvi0bqTn4AtyOLRg
CODEN ITPRED
CitedBy_id crossref_primary_10_1016_j_sigpro_2013_08_016
crossref_primary_10_1016_j_sigpro_2013_11_040
crossref_primary_10_1016_j_sigpro_2011_08_004
crossref_primary_10_1109_LSP_2010_2080674
crossref_primary_10_1109_TSP_2020_3001906
crossref_primary_10_1109_LSP_2012_2196692
Cites_doi 10.1109/TPAMI.2008.79
10.1109/TSP.2007.913156
10.1007/BF01580367
10.1109/97.923042
10.1098/rsta.1999.0447
10.1002/cpa.3160410705
10.1109/MSP.2005.1550194
10.1109/TSP.2006.872542
10.1109/LSP.2006.874453
10.1007/BF01580892
10.1017/CBO9780511804441
10.1109/78.995070
10.1109/18.119725
10.1287/opre.14.4.699
10.1109/LSP.2007.913609
10.1109/TCSI.2005.856048
10.1109/CVPR.2008.4587846
10.1109/TSP.2008.924134
10.1109/TSP.2008.917408
10.1109/34.799911
10.1109/LSP.2007.910318
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright_xml – notice: 2015 INIST-CNRS
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
DOI 10.1109/TSP.2009.2029725
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1941-0476
EndPage 241
ExternalDocumentID 22492321
10_1109_TSP_2009_2029725
5200398
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
53G
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AJQPL
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
IQODW
RIG
ID FETCH-LOGICAL-c293t-a45f9258209a014a68a3f497f9980a0c63377adb41cefb7945e4ef1f79211cd23
IEDL.DBID RIE
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000272843900019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1053-587X
IngestDate Mon Jul 21 09:16:22 EDT 2025
Sat Nov 29 04:10:15 EST 2025
Tue Nov 18 22:20:44 EST 2025
Tue Aug 26 17:10:48 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords dual-tree complex wavelet transform (DTWT)
conjugate quadrature filter (CQF)
Branch and bound method
L1 approximation
Programming
Bilinear programming
Orthogonality
Hilbert transformation
Constrained optimization
Hilbert transform
Wavelet transformation
Optimal solution
Wavelet base
Signal processing
Filter bank
orthonormal wavelet bases
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-a45f9258209a014a68a3f497f9980a0c63377adb41cefb7945e4ef1f79211cd23
PageCount 9
ParticipantIDs pascalfrancis_primary_22492321
crossref_citationtrail_10_1109_TSP_2009_2029725
crossref_primary_10_1109_TSP_2009_2029725
ieee_primary_5200398
PublicationCentury 2000
PublicationDate 2010-Jan.
2010-01-00
2010
PublicationDateYYYYMMDD 2010-01-01
PublicationDate_xml – month: 01
  year: 2010
  text: 2010-Jan.
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
PublicationTitle IEEE transactions on signal processing
PublicationTitleAbbrev TSP
PublicationYear 2010
Publisher IEEE
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
References ref13
ref12
ref14
ref11
yang (ref22) 2008
ref2
ref1
ref17
ref16
ref19
ref18
mallat (ref15) 1999
shi (ref8) 2008; 56
lu (ref10) 1999
ref24
ref25
ref20
ref21
ref7
ref9
ref4
ref3
ref6
ref5
tibshirani (ref23) 1996; 58
References_xml – ident: ref24
  doi: 10.1109/TPAMI.2008.79
– volume: 56
  start-page: 2289
  year: 2008
  ident: ref8
  article-title: a novel scheme for the design of approximate hilbert transform pairs of orthonormal wavelet bases
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2007.913156
– ident: ref20
  doi: 10.1007/BF01580367
– year: 1999
  ident: ref15
  publication-title: A Wavelet Tour of Signal Processing
– year: 2008
  ident: ref22
  article-title: image super-resolution as sparse representation of raw image patches
  publication-title: Proc IEEE Conf Comput Vision Pattern Recogn
– ident: ref4
  doi: 10.1109/97.923042
– ident: ref2
  doi: 10.1098/rsta.1999.0447
– ident: ref16
  doi: 10.1002/cpa.3160410705
– ident: ref3
  doi: 10.1109/MSP.2005.1550194
– ident: ref17
  doi: 10.1109/TSP.2006.872542
– ident: ref5
  doi: 10.1109/LSP.2006.874453
– year: 1999
  ident: ref10
  article-title: design of nonlinear-phase fir digital filters: a semidefiniteprogramming approach
  publication-title: Proc IEEE Int Symp Circuits Syst (ISCAS'99)
– ident: ref19
  doi: 10.1007/BF01580892
– ident: ref18
  doi: 10.1017/CBO9780511804441
– ident: ref7
  doi: 10.1109/78.995070
– ident: ref1
  doi: 10.1109/18.119725
– ident: ref14
  doi: 10.1287/opre.14.4.699
– ident: ref6
  doi: 10.1109/LSP.2007.913609
– ident: ref11
  doi: 10.1109/TCSI.2005.856048
– ident: ref21
  doi: 10.1109/CVPR.2008.4587846
– ident: ref12
  doi: 10.1109/TSP.2008.924134
– ident: ref13
  doi: 10.1109/TSP.2008.917408
– ident: ref25
  doi: 10.1109/34.799911
– ident: ref9
  doi: 10.1109/LSP.2007.910318
– volume: 58
  start-page: 267
  year: 1996
  ident: ref23
  article-title: regression shrinkage and selection via the lasso
  publication-title: Royal Statistical Society Series B Statistical Methodology)
SSID ssj0014496
Score 1.9914073
Snippet It is understood that the Hilbert transform pairs of orthonormal wavelet bases can only be realized approximately by the scaling filters of conjugate...
SourceID pascalfrancis
crossref
ieee
SourceType Index Database
Enrichment Source
Publisher
StartPage 233
SubjectTerms Applied sciences
Bilinear programming
conjugate quadrature filter (CQF)
Constraint optimization
Delay
Detection, estimation, filtering, equalization, prediction
Discrete transforms
Discrete wavelet transforms
dual-tree complex wavelet transform (DTWT)
Exact sciences and technology
Filter bank
Finite impulse response filter
Frequency
Hilbert transform
Information, signal and communications theory
Miscellaneous
orthonormal wavelet bases
Quadratic programming
Signal and communications theory
Signal processing
Signal, noise
Telecommunications and information theory
Wavelet transforms
Title A Globally Optimal Bilinear Programming Approach to the Design of Approximate Hilbert Pairs of Orthonormal Wavelet Bases
URI https://ieeexplore.ieee.org/document/5200398
Volume 58
WOSCitedRecordID wos000272843900019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE
  customDbUrl:
  eissn: 1941-0476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014496
  issn: 1053-587X
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Na-MwEB3a0kP30O3X0uxH0KGXQt3ElmxZx2S3oack0C6bW1DkEQTSpCTu0v33O2M5JoWysDeDRsJobM2TZvQewBVKk5vC2ygu0EcKCcNZPcsiJCyOMWrtClWJTejhMJ9MzHgPbpq7MIhYFZ_hLT9Wufxi5V74qKzDFEE09j7sa52Fu1pNxkCpSouL4IKM0lxPtinJruk8PowDMWXCSk0sir0TgipNFa6ItBuaFB_ULHZCzODj_73cCRzXUFL0gu9PYQ-XZ_Bhh2DwHF57IpD6L_6IES0OT2TfnzOytGsxDqVZT2QpejW1uChXgiCh-FEVdoiVDy2v1LNEcT9nRqxSjDkJxI2jNVMPMOxdiF-WNSxK0ae4uLmAn4O7x-_3Ua21EDkK-GVkVepNkhIeMJYm02a5lV4Z7Wk71rVdl0mptS1mKnboZ_QTp6jQx14b2kG6IpGf4GC5WuIliMImNCY6mSqrrLZ5nknlY9q4SFpdC9mCznb6p64mImc9jMW02pB0zZQcxvKYZlo7rAXXTY_nQMLxD9tz9k1jV7ulBe03Hm7aE6ZMlEn8-f1-X-Ao1AvwoctXOCjXL_gNDt3vcr5Zt6tP8C_yLtow
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9swED66brD2ofvRlmXtOj3sZVAvtiVH1mParWSsSwNLWd6MIp8gkCYlcUf73-_Ock0GY7A3g07C6GzdJ93p-wA-oDS5Kb2NkhJ9pJAwnNXTXoSExTFBrV2parEJPRzmk4kZbcFpexcGEeviM_zEj3Uuv1y6Oz4q6zJFEI39BJ5mSqVxuK3V5gyUqtW4CDDIKMv15DEpGZvu-McoUFOmrNXEstgbQahWVeGaSLumafFBz2IjyFy8-L_Xewl7DZgU_eD9V7CFi9ewu0ExuA_3fRFo_ecP4oqWhxuyP5sxtrQrMQrFWTdkKfoNubioloJAofhcl3aIpQ8t99SzQjGYMSdWJUacBuLGqxWTDzDwnYufllUsKnFGkXF9ANcXX8bng6hRW4gchfwqsirzJs0IERhLk2l7uZVeGe1pQxbb2PWk1NqWU5U49FP6jTNU6BOvDe0hXZnKQ9heLBf4BkRpUxoTncyUVVbbPO9J5RPaukhaX0vZge7j9BeuoSJnRYx5UW9JYlOQw1gg0xSNwzrwse1xG2g4_mG7z75p7Rq3dODkDw-37SmTJso0efv3fu_h-WD8_bK4_Dr8dgQ7oXqAj2COYbta3eE7eOZ-VbP16qT-HH8Dcqfddw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Globally+Optimal+Bilinear+Programming+Approach+to+the+Design+of+Approximate+Hilbert+Pairs+of+Orthonormal+Wavelet+Bases&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=JIANG+WANG&rft.au=JIAN+QIU+ZHANG&rft.date=2010&rft.pub=Institute+of+Electrical+and+Electronics+Engineers&rft.issn=1053-587X&rft.volume=58&rft.issue=1&rft.spage=233&rft.epage=241&rft_id=info:doi/10.1109%2FTSP.2009.2029725&rft.externalDBID=n%2Fa&rft.externalDocID=22492321
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon