DLSLA 3-D SAR Imaging via Sparse Recovery Through Combination of Nuclear Norm and Low-Rank Matrix Factorization

Downward-looking sparse linear array 3-D synthetic aperture radar (DLSLA 3-D SAR) cross-track dimensional imaging always suffers from incomplete observation which does not satisfy the Nyquist sampling theorem and leads to the failure of conventional 3-D frequency-domain methods. Although several spa...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on geoscience and remote sensing Ročník 60; s. 1 - 13
Hlavní autoři: Gu, Tong, Liao, Guisheng, Li, Yachao, Guo, Yifan, Liu, Yongjun
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0196-2892, 1558-0644
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Downward-looking sparse linear array 3-D synthetic aperture radar (DLSLA 3-D SAR) cross-track dimensional imaging always suffers from incomplete observation which does not satisfy the Nyquist sampling theorem and leads to the failure of conventional 3-D frequency-domain methods. Although several sparse reconstruction-based methods have been presented to solve this problem, the basis mismatch issue in sparse reconstruction theory will degrade the image reconstruction performance. To address this issue, this article proposes a novel 3-D imaging method for DLSLA 3-D SAR, which provides another idea for 3-D imaging through sparse recovery. It utilizes recovered full-sampled data to achieve cross-track dimensional imaging instead of using the under-sampled data directly as before. The Along-track-Height plane imaging is first finished by the range-Doppler (RD) algorithm and motion error compensation. Then, an advanced nuclear norm and low-rank matrix factorization (NU-LRMF)-based matrix completion (MC) algorithm and a vector reconstruction framework are built to achieve accurate recovery of full-sampled data. Finally, the cross-track dimensional imaging is completed with recovered full-sampled data by geometric correction and beamforming. Moreover, a fast two-stage iteration strategy for NU-LRMF (TS-NU-LRMF) is also presented to accelerate convergence. The robustness and effectiveness of the proposed 3-D imaging method are verified by several numerical simulations and comparative studies based on both the complex 3-D ship model and the simulated 3-D distributed scenario.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0196-2892
1558-0644
DOI:10.1109/TGRS.2021.3100715