Adaptive Seismic Single-Channel Deconvolution via Convolutional Sparse Coding Model
Seismic deconvolution is a typical ill-posed inverse problem. The regularization technique in terms of different prior information is used for a unique and stable solution. Due to the difference between prior information and the actual subsurface situation, it is hard to obtain a solution with satis...
Saved in:
| Published in: | IEEE geoscience and remote sensing letters Vol. 17; no. 8; pp. 1415 - 1419 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Piscataway
IEEE
01.08.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 1545-598X, 1558-0571 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Seismic deconvolution is a typical ill-posed inverse problem. The regularization technique in terms of different prior information is used for a unique and stable solution. Due to the difference between prior information and the actual subsurface situation, it is hard to obtain a solution with satisfactory accuracy and resolution. This letter presents the dictionary learning as an efficient adaptive deconvolution method for the reflectivity reconstruction problem. Considering the curse of dimensionality of conventional dictionary learning and the suboptimal solution of the patch-based dictionary learning, we take the convolutional sparse coding (CSC) model as the dictionary learning method. In this method, the prior information can be obtained from the well-log data in the form of sparse CSC dictionary of reflectivity. On the assumption that the deposition of the subsurface layers is stable, the CSC dictionary extracted from the well-log data can also be applied in the whole work area. The CSC-based deconvolution can be seen as the adaptive deconvolution due to the independence of the assumption made about the reflectivity and seismic data. The process of the adaptive CSC-based deconvolution is divided into three parts. First, the CSC dictionary is learned from the well-log data. Then, the objective function is formulated by combining the CSC dictionary and the single-channel seismic record misfit term for the reconstruction of reflectivity. Finally, the objective function is efficiently solved with the coordinate descent approach. We illustrate the performance of our adaptive deconvolution with synthetic and field seismic data. |
|---|---|
| AbstractList | Seismic deconvolution is a typical ill-posed inverse problem. The regularization technique in terms of different prior information is used for a unique and stable solution. Due to the difference between prior information and the actual subsurface situation, it is hard to obtain a solution with satisfactory accuracy and resolution. This letter presents the dictionary learning as an efficient adaptive deconvolution method for the reflectivity reconstruction problem. Considering the curse of dimensionality of conventional dictionary learning and the suboptimal solution of the patch-based dictionary learning, we take the convolutional sparse coding (CSC) model as the dictionary learning method. In this method, the prior information can be obtained from the well-log data in the form of sparse CSC dictionary of reflectivity. On the assumption that the deposition of the subsurface layers is stable, the CSC dictionary extracted from the well-log data can also be applied in the whole work area. The CSC-based deconvolution can be seen as the adaptive deconvolution due to the independence of the assumption made about the reflectivity and seismic data. The process of the adaptive CSC-based deconvolution is divided into three parts. First, the CSC dictionary is learned from the well-log data. Then, the objective function is formulated by combining the CSC dictionary and the single-channel seismic record misfit term for the reconstruction of reflectivity. Finally, the objective function is efficiently solved with the coordinate descent approach. We illustrate the performance of our adaptive deconvolution with synthetic and field seismic data. |
| Author | Yu, Bo Wang, Yufeng Wang, Lingqian Zhou, Hui Fang, Jinwei |
| Author_xml | – sequence: 1 givenname: Lingqian surname: Wang fullname: Wang, Lingqian organization: State Key Laboratory of Petroleum Resources and Prospecting, Key Laboratory of Geophysical Exploration of CNPC, China University of Petroleum, Beijing, China – sequence: 2 givenname: Hui orcidid: 0000-0002-0166-0073 surname: Zhou fullname: Zhou, Hui email: huizhou@cup.edu.cn organization: State Key Laboratory of Petroleum Resources and Prospecting, Key Laboratory of Geophysical Exploration of CNPC, China University of Petroleum, Beijing, China – sequence: 3 givenname: Yufeng surname: Wang fullname: Wang, Yufeng organization: State Key Laboratory of Petroleum Resources and Prospecting, Key Laboratory of Geophysical Exploration of CNPC, China University of Petroleum, Beijing, China – sequence: 4 givenname: Bo surname: Yu fullname: Yu, Bo organization: State Key Laboratory of Petroleum Resources and Prospecting, Key Laboratory of Geophysical Exploration of CNPC, China University of Petroleum, Beijing, China – sequence: 5 givenname: Jinwei orcidid: 0000-0002-1664-0024 surname: Fang fullname: Fang, Jinwei organization: State Key Laboratory of Petroleum Resources and Prospecting, Key Laboratory of Geophysical Exploration of CNPC, China University of Petroleum, Beijing, China |
| BookMark | eNp9kM9LwzAUgIMouE3_APFS8NyZtE3SHEfVKUwEq-AtpMmLZnRtTbqB_70tGwoePOXl8b7345ui46ZtAKELgueEYHG9Wj6X8wQTMU9ERrkQR2hCKM1jTDk5HuOMxlTkb6doGsIa4yTLcz5B5cKornc7iEpwYeN0VLrmvYa4-FBNA3V0A7ptdm297V3bRDunouL3r-qo7JQPMCTNwEWPrYH6DJ1YVQc4P7wz9Hp3-1Lcx6un5UOxWMU6EWkf55ZUilFCOEszVoFNwVQUm1QZnlRYcGoJJdoaoVmlgeVUm6riHFJlwQpIZ-hq37fz7ecWQi_X7dYPSwWZZAljLEkFH6rIvkr7NgQPVnbebZT_kgTL0Z0c3cnRnTy4Gxj-h9GuV-PFvVeu_pe83JMOAH4mDaoZJzj9BqaNf_4 |
| CODEN | IGRSBY |
| CitedBy_id | crossref_primary_10_1109_LGRS_2024_3413686 crossref_primary_10_1109_TGRS_2024_3357057 crossref_primary_10_1109_TGRS_2022_3141113 crossref_primary_10_1109_TGRS_2021_3076991 crossref_primary_10_1016_j_petsci_2023_02_023 crossref_primary_10_1109_LGRS_2021_3083489 crossref_primary_10_1109_TGRS_2024_3368016 crossref_primary_10_1190_geo2022_0561_1 |
| Cites_doi | 10.1190/geo2011-0502.1 10.1109/TIP.2006.881969 10.1190/geo2017-0615.1 10.1109/TSP.2009.2036477 10.1109/ICASSP.1999.760624 10.1190/geo2014-0257.1 10.1016/j.jappgeo.2018.05.012 10.1109/TGRS.2008.2012348 10.1190/geo2013-0313.1 10.1190/geo2013-0465.1 10.1109/ICCV.2015.212 10.1190/geo2015-0247.1 10.1109/TSP.2006.881199 10.1109/TSP.2012.2188520 10.1190/geo2018-0136.1 10.1109/ICIP.2013.6738032 10.1111/j.1365-246X.1997.tb04500.x 10.1111/j.1365-2478.1990.tb01852.x 10.1137/130905009 10.1190/geo2017-0516.1 10.1190/INT-2016-0049.1 10.1109/ICCV.2017.566 10.1109/TGRS.2017.2722223 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TG 7UA 8FD C1K F1W FR3 H8D H96 JQ2 KL. KR7 L.G L7M L~C L~D |
| DOI | 10.1109/LGRS.2019.2945799 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest Computer Science Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management Computer and Information Systems Abstracts Professional Aerospace Database Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
| DatabaseTitleList | Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Geology |
| EISSN | 1558-0571 |
| EndPage | 1419 |
| ExternalDocumentID | 10_1109_LGRS_2019_2945799 8876710 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 41630314; 41874130 funderid: 10.13039/501100001809 – fundername: National Basic Research Program of China (973 Program); National Key Research and Development Program of China grantid: 2018YFA0702502 funderid: 10.13039/501100012166 – fundername: National Key Science and Technology Program grantid: 2016ZX05010-001 |
| GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS ~02 AAYXX CITATION 7SC 7SP 7TG 7UA 8FD C1K F1W FR3 H8D H96 JQ2 KL. KR7 L.G L7M L~C L~D |
| ID | FETCH-LOGICAL-c293t-8f1ba651176346bef3edb50d3ad72b0975f151cfd9c6bce685cdbb77e3afef9e3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000552271800026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1545-598X |
| IngestDate | Sun Nov 09 08:16:59 EST 2025 Tue Nov 18 22:43:35 EST 2025 Sat Nov 29 05:54:00 EST 2025 Wed Aug 27 02:29:53 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-8f1ba651176346bef3edb50d3ad72b0975f151cfd9c6bce685cdbb77e3afef9e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1664-0024 0000-0002-0166-0073 |
| PQID | 2426662397 |
| PQPubID | 75725 |
| PageCount | 5 |
| ParticipantIDs | proquest_journals_2426662397 crossref_primary_10_1109_LGRS_2019_2945799 ieee_primary_8876710 crossref_citationtrail_10_1109_LGRS_2019_2945799 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-08-01 |
| PublicationDateYYYYMMDD | 2020-08-01 |
| PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE geoscience and remote sensing letters |
| PublicationTitleAbbrev | LGRS |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref24 ref12 ref23 ref15 ref14 ref20 ref11 ref10 ref21 ref2 ref1 ref17 ref16 ref19 ref18 ref8 zisselman (ref22) 2018 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref23 doi: 10.1190/geo2011-0502.1 – ident: ref18 doi: 10.1109/TIP.2006.881969 – ident: ref13 doi: 10.1190/geo2017-0615.1 – ident: ref16 doi: 10.1109/TSP.2009.2036477 – ident: ref15 doi: 10.1109/ICASSP.1999.760624 – ident: ref4 doi: 10.1190/geo2014-0257.1 – ident: ref24 doi: 10.1016/j.jappgeo.2018.05.012 – ident: ref11 doi: 10.1109/TGRS.2008.2012348 – ident: ref1 doi: 10.1190/geo2013-0313.1 – ident: ref12 doi: 10.1190/geo2013-0465.1 – ident: ref20 doi: 10.1109/ICCV.2015.212 – year: 2018 ident: ref22 article-title: A local block coordinate descent algorithm for the convolutional sparse coding model publication-title: arXiv 1811 00312 – ident: ref5 doi: 10.1190/geo2015-0247.1 – ident: ref14 doi: 10.1109/TSP.2006.881199 – ident: ref19 doi: 10.1109/TSP.2012.2188520 – ident: ref7 doi: 10.1190/geo2018-0136.1 – ident: ref17 doi: 10.1109/ICIP.2013.6738032 – ident: ref2 doi: 10.1111/j.1365-246X.1997.tb04500.x – ident: ref3 doi: 10.1111/j.1365-2478.1990.tb01852.x – ident: ref8 doi: 10.1137/130905009 – ident: ref10 doi: 10.1190/geo2017-0516.1 – ident: ref9 doi: 10.1190/INT-2016-0049.1 – ident: ref21 doi: 10.1109/ICCV.2017.566 – ident: ref6 doi: 10.1109/TGRS.2017.2722223 |
| SSID | ssj0024887 |
| Score | 2.3190048 |
| Snippet | Seismic deconvolution is a typical ill-posed inverse problem. The regularization technique in terms of different prior information is used for a unique and... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1415 |
| SubjectTerms | Coding Convolutional codes Convolutional sparse coding (CSC) Data mining Deconvolution Dictionaries dictionary learning Encoding Glossaries Ill posed problems Inverse problems Learning Linear programming Machine learning Objective function pursuit Reconstruction Reflectance Regularization Seismic activity Seismic data seismic deconvolution Seismological data Seismology |
| Title | Adaptive Seismic Single-Channel Deconvolution via Convolutional Sparse Coding Model |
| URI | https://ieeexplore.ieee.org/document/8876710 https://www.proquest.com/docview/2426662397 |
| Volume | 17 |
| WOSCitedRecordID | wos000552271800026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0571 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0024887 issn: 1545-598X databaseCode: RIE dateStart: 20040101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH9BotGLH6ARv7KDJ-NgbGxtjwQFD4QYpwm3pe1eIwkC4Svhv7ctBQ4aE2_b0mZNX9vf77V97wdwzxsxQYnc5xHTDooS3Ke8Lv1YKSRK842GsHlmu6TXo_0-ey3A4zYWBhHt5TOsmkd7lp-P5cJsldX0hEiIiafaIyRZx2rt8upRK4ZnGIEfM9p3J5j1gNW6nbfUXOJi1ZDpptk0rzsMsqIqP1ZiCy_tk_817BSOHY30mmu7n0EBRyU4dIrmn6sSHHSsZO-qDGkz5xOzqHkpDmZfA-mlGq6G6JvAghEOvSfjEy_dEPSWA-61du_6J-lEO7-oPxqY84x42vAcPtrP760X30kp-FLj-dynqi54osmVXk4aiUAVYS7iII94TkIRMBIrDf1S5UwmQmJCY5kLQQhGXKFiGF1AcTQe4SV4sVQ0D6lUTHMXDfiUkToTYahMIn4WsQoEm87NpMszbuQuhpn1NwKWGXtkxh6Zs0cFHrZVJuskG38VLhsDbAu6vq_AzcaCmZuGs8zyD03wGLn6vdY1HIXGgbY3-m6gOJ8u8Bb25XI-mE3v7Aj7BhnfzxA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB6kKvXio1Wszz14Ele3-0pyFLUq1iJuhd6WJDvBQm1LX-C_N0lje1AEb7tLwoZMku-bJDMfwBmPE4ISuc8jph0UJbhPeV36iVJIlOYbsbB5Zpuk1aKdDntZgYtFLAwi2stneGke7Vl-MZBTs1V2pSdESkw81WoSx2Ewj9ZaZtajVg7PcAI_YbTjzjDrAbtq3r9m5hoXuwyZbpxN9LpEISur8mMttgDT2Ppf07Zh0xFJ73pu-R1YwX4Fyk7T_P2zAuv3VrT3swrZdcGHZlnzMuyOP7rSyzRg9dA3oQV97Hm3xiueuUHozbrcu1m-659kQ-3-ov5ogM4z8mm9XXhr3LVvHnwnpuBLjegTn6q64KmmV3pBiVOBKsJCJEER8YKEImAkURr8pSqYTIXElCayEIIQjLhCxTDag1J_0Md98BKpaBFSqZhmLxryKSN1JsJQmVT8LGI1CL47N5cu07gRvOjl1uMIWG7skRt75M4eNThfVBnO02z8VbhqDLAo6Pq-BkffFszdRBznloFoisfIwe-1TqH80H5u5s3H1tMhbITGnbb3-46gNBlN8RjW5GzSHY9O7Gj7Agi40lc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Seismic+Single-Channel+Deconvolution+via+Convolutional+Sparse+Coding+Model&rft.jtitle=IEEE+geoscience+and+remote+sensing+letters&rft.au=Wang%2C+Lingqian&rft.au=Zhou%2C+Hui&rft.au=Wang%2C+Yufeng&rft.au=Yu%2C+Bo&rft.date=2020-08-01&rft.pub=IEEE&rft.issn=1545-598X&rft.volume=17&rft.issue=8&rft.spage=1415&rft.epage=1419&rft_id=info:doi/10.1109%2FLGRS.2019.2945799&rft.externalDocID=8876710 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-598X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-598X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-598X&client=summon |