Adaptive Seismic Single-Channel Deconvolution via Convolutional Sparse Coding Model

Seismic deconvolution is a typical ill-posed inverse problem. The regularization technique in terms of different prior information is used for a unique and stable solution. Due to the difference between prior information and the actual subsurface situation, it is hard to obtain a solution with satis...

Full description

Saved in:
Bibliographic Details
Published in:IEEE geoscience and remote sensing letters Vol. 17; no. 8; pp. 1415 - 1419
Main Authors: Wang, Lingqian, Zhou, Hui, Wang, Yufeng, Yu, Bo, Fang, Jinwei
Format: Journal Article
Language:English
Published: Piscataway IEEE 01.08.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1545-598X, 1558-0571
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Seismic deconvolution is a typical ill-posed inverse problem. The regularization technique in terms of different prior information is used for a unique and stable solution. Due to the difference between prior information and the actual subsurface situation, it is hard to obtain a solution with satisfactory accuracy and resolution. This letter presents the dictionary learning as an efficient adaptive deconvolution method for the reflectivity reconstruction problem. Considering the curse of dimensionality of conventional dictionary learning and the suboptimal solution of the patch-based dictionary learning, we take the convolutional sparse coding (CSC) model as the dictionary learning method. In this method, the prior information can be obtained from the well-log data in the form of sparse CSC dictionary of reflectivity. On the assumption that the deposition of the subsurface layers is stable, the CSC dictionary extracted from the well-log data can also be applied in the whole work area. The CSC-based deconvolution can be seen as the adaptive deconvolution due to the independence of the assumption made about the reflectivity and seismic data. The process of the adaptive CSC-based deconvolution is divided into three parts. First, the CSC dictionary is learned from the well-log data. Then, the objective function is formulated by combining the CSC dictionary and the single-channel seismic record misfit term for the reconstruction of reflectivity. Finally, the objective function is efficiently solved with the coordinate descent approach. We illustrate the performance of our adaptive deconvolution with synthetic and field seismic data.
AbstractList Seismic deconvolution is a typical ill-posed inverse problem. The regularization technique in terms of different prior information is used for a unique and stable solution. Due to the difference between prior information and the actual subsurface situation, it is hard to obtain a solution with satisfactory accuracy and resolution. This letter presents the dictionary learning as an efficient adaptive deconvolution method for the reflectivity reconstruction problem. Considering the curse of dimensionality of conventional dictionary learning and the suboptimal solution of the patch-based dictionary learning, we take the convolutional sparse coding (CSC) model as the dictionary learning method. In this method, the prior information can be obtained from the well-log data in the form of sparse CSC dictionary of reflectivity. On the assumption that the deposition of the subsurface layers is stable, the CSC dictionary extracted from the well-log data can also be applied in the whole work area. The CSC-based deconvolution can be seen as the adaptive deconvolution due to the independence of the assumption made about the reflectivity and seismic data. The process of the adaptive CSC-based deconvolution is divided into three parts. First, the CSC dictionary is learned from the well-log data. Then, the objective function is formulated by combining the CSC dictionary and the single-channel seismic record misfit term for the reconstruction of reflectivity. Finally, the objective function is efficiently solved with the coordinate descent approach. We illustrate the performance of our adaptive deconvolution with synthetic and field seismic data.
Author Yu, Bo
Wang, Yufeng
Wang, Lingqian
Zhou, Hui
Fang, Jinwei
Author_xml – sequence: 1
  givenname: Lingqian
  surname: Wang
  fullname: Wang, Lingqian
  organization: State Key Laboratory of Petroleum Resources and Prospecting, Key Laboratory of Geophysical Exploration of CNPC, China University of Petroleum, Beijing, China
– sequence: 2
  givenname: Hui
  orcidid: 0000-0002-0166-0073
  surname: Zhou
  fullname: Zhou, Hui
  email: huizhou@cup.edu.cn
  organization: State Key Laboratory of Petroleum Resources and Prospecting, Key Laboratory of Geophysical Exploration of CNPC, China University of Petroleum, Beijing, China
– sequence: 3
  givenname: Yufeng
  surname: Wang
  fullname: Wang, Yufeng
  organization: State Key Laboratory of Petroleum Resources and Prospecting, Key Laboratory of Geophysical Exploration of CNPC, China University of Petroleum, Beijing, China
– sequence: 4
  givenname: Bo
  surname: Yu
  fullname: Yu, Bo
  organization: State Key Laboratory of Petroleum Resources and Prospecting, Key Laboratory of Geophysical Exploration of CNPC, China University of Petroleum, Beijing, China
– sequence: 5
  givenname: Jinwei
  orcidid: 0000-0002-1664-0024
  surname: Fang
  fullname: Fang, Jinwei
  organization: State Key Laboratory of Petroleum Resources and Prospecting, Key Laboratory of Geophysical Exploration of CNPC, China University of Petroleum, Beijing, China
BookMark eNp9kM9LwzAUgIMouE3_APFS8NyZtE3SHEfVKUwEq-AtpMmLZnRtTbqB_70tGwoePOXl8b7345ui46ZtAKELgueEYHG9Wj6X8wQTMU9ERrkQR2hCKM1jTDk5HuOMxlTkb6doGsIa4yTLcz5B5cKornc7iEpwYeN0VLrmvYa4-FBNA3V0A7ptdm297V3bRDunouL3r-qo7JQPMCTNwEWPrYH6DJ1YVQc4P7wz9Hp3-1Lcx6un5UOxWMU6EWkf55ZUilFCOEszVoFNwVQUm1QZnlRYcGoJJdoaoVmlgeVUm6riHFJlwQpIZ-hq37fz7ecWQi_X7dYPSwWZZAljLEkFH6rIvkr7NgQPVnbebZT_kgTL0Z0c3cnRnTy4Gxj-h9GuV-PFvVeu_pe83JMOAH4mDaoZJzj9BqaNf_4
CODEN IGRSBY
CitedBy_id crossref_primary_10_1109_LGRS_2024_3413686
crossref_primary_10_1109_TGRS_2024_3357057
crossref_primary_10_1109_TGRS_2022_3141113
crossref_primary_10_1109_TGRS_2021_3076991
crossref_primary_10_1016_j_petsci_2023_02_023
crossref_primary_10_1109_LGRS_2021_3083489
crossref_primary_10_1109_TGRS_2024_3368016
crossref_primary_10_1190_geo2022_0561_1
Cites_doi 10.1190/geo2011-0502.1
10.1109/TIP.2006.881969
10.1190/geo2017-0615.1
10.1109/TSP.2009.2036477
10.1109/ICASSP.1999.760624
10.1190/geo2014-0257.1
10.1016/j.jappgeo.2018.05.012
10.1109/TGRS.2008.2012348
10.1190/geo2013-0313.1
10.1190/geo2013-0465.1
10.1109/ICCV.2015.212
10.1190/geo2015-0247.1
10.1109/TSP.2006.881199
10.1109/TSP.2012.2188520
10.1190/geo2018-0136.1
10.1109/ICIP.2013.6738032
10.1111/j.1365-246X.1997.tb04500.x
10.1111/j.1365-2478.1990.tb01852.x
10.1137/130905009
10.1190/geo2017-0516.1
10.1190/INT-2016-0049.1
10.1109/ICCV.2017.566
10.1109/TGRS.2017.2722223
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KL.
KR7
L.G
L7M
L~C
L~D
DOI 10.1109/LGRS.2019.2945799
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest Computer Science Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
Computer and Information Systems Abstracts Professional
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
EISSN 1558-0571
EndPage 1419
ExternalDocumentID 10_1109_LGRS_2019_2945799
8876710
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 41630314; 41874130
  funderid: 10.13039/501100001809
– fundername: National Basic Research Program of China (973 Program); National Key Research and Development Program of China
  grantid: 2018YFA0702502
  funderid: 10.13039/501100012166
– fundername: National Key Science and Technology Program
  grantid: 2016ZX05010-001
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
~02
AAYXX
CITATION
7SC
7SP
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KL.
KR7
L.G
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-8f1ba651176346bef3edb50d3ad72b0975f151cfd9c6bce685cdbb77e3afef9e3
IEDL.DBID RIE
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000552271800026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1545-598X
IngestDate Sun Nov 09 08:16:59 EST 2025
Tue Nov 18 22:43:35 EST 2025
Sat Nov 29 05:54:00 EST 2025
Wed Aug 27 02:29:53 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-8f1ba651176346bef3edb50d3ad72b0975f151cfd9c6bce685cdbb77e3afef9e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1664-0024
0000-0002-0166-0073
PQID 2426662397
PQPubID 75725
PageCount 5
ParticipantIDs proquest_journals_2426662397
crossref_primary_10_1109_LGRS_2019_2945799
ieee_primary_8876710
crossref_citationtrail_10_1109_LGRS_2019_2945799
PublicationCentury 2000
PublicationDate 2020-08-01
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE geoscience and remote sensing letters
PublicationTitleAbbrev LGRS
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref24
ref12
ref23
ref15
ref14
ref20
ref11
ref10
ref21
ref2
ref1
ref17
ref16
ref19
ref18
ref8
zisselman (ref22) 2018
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref23
  doi: 10.1190/geo2011-0502.1
– ident: ref18
  doi: 10.1109/TIP.2006.881969
– ident: ref13
  doi: 10.1190/geo2017-0615.1
– ident: ref16
  doi: 10.1109/TSP.2009.2036477
– ident: ref15
  doi: 10.1109/ICASSP.1999.760624
– ident: ref4
  doi: 10.1190/geo2014-0257.1
– ident: ref24
  doi: 10.1016/j.jappgeo.2018.05.012
– ident: ref11
  doi: 10.1109/TGRS.2008.2012348
– ident: ref1
  doi: 10.1190/geo2013-0313.1
– ident: ref12
  doi: 10.1190/geo2013-0465.1
– ident: ref20
  doi: 10.1109/ICCV.2015.212
– year: 2018
  ident: ref22
  article-title: A local block coordinate descent algorithm for the convolutional sparse coding model
  publication-title: arXiv 1811 00312
– ident: ref5
  doi: 10.1190/geo2015-0247.1
– ident: ref14
  doi: 10.1109/TSP.2006.881199
– ident: ref19
  doi: 10.1109/TSP.2012.2188520
– ident: ref7
  doi: 10.1190/geo2018-0136.1
– ident: ref17
  doi: 10.1109/ICIP.2013.6738032
– ident: ref2
  doi: 10.1111/j.1365-246X.1997.tb04500.x
– ident: ref3
  doi: 10.1111/j.1365-2478.1990.tb01852.x
– ident: ref8
  doi: 10.1137/130905009
– ident: ref10
  doi: 10.1190/geo2017-0516.1
– ident: ref9
  doi: 10.1190/INT-2016-0049.1
– ident: ref21
  doi: 10.1109/ICCV.2017.566
– ident: ref6
  doi: 10.1109/TGRS.2017.2722223
SSID ssj0024887
Score 2.318911
Snippet Seismic deconvolution is a typical ill-posed inverse problem. The regularization technique in terms of different prior information is used for a unique and...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1415
SubjectTerms Coding
Convolutional codes
Convolutional sparse coding (CSC)
Data mining
Deconvolution
Dictionaries
dictionary learning
Encoding
Glossaries
Ill posed problems
Inverse problems
Learning
Linear programming
Machine learning
Objective function
pursuit
Reconstruction
Reflectance
Regularization
Seismic activity
Seismic data
seismic deconvolution
Seismological data
Seismology
Title Adaptive Seismic Single-Channel Deconvolution via Convolutional Sparse Coding Model
URI https://ieeexplore.ieee.org/document/8876710
https://www.proquest.com/docview/2426662397
Volume 17
WOSCitedRecordID wos000552271800026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0571
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024887
  issn: 1545-598X
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB5BBWIvvBFlAeXAaYUhj8aPY8XzgBAiu6veIj8molIpFS2V-PfrcU17YIXELYnsJJqx_c3YM_MBnORZob2bzJk0Rck6QmimO5liPEfhsqwQLpRS-nsn7u9lr6celuB0nguDiCH4DM_oMpzluxf7Rltl535CcEH5VMtC8Fmu1qKungxkeGQRsFLJXjzBzFJ1fnfzWFEQlzrLVacUoczrAoMCqcqnlTjAy_XG935sE9ajGZl0Z3rfgiUcbsNaZDR_et-G1ZtA2fu-A1XX6REtakmF_fFz3yaVh6sBMkosGOIguSSfeBqHYDLt6-Rice8_Uo2884v-IcFcQuRpg134c331--KWRSoFZj2eT5hsMqO5N678ctLhBpsCnSlTV2gncpMqUTYe-m3jlOXGIpeldcYIgYVusFFY7EFr-DLEfUi4tNpL27_M22KmlB7xNWWwNlI4KgbXhvRDuLWNdcaJ7mJQB38jVTXpoyZ91FEfbfg17zKaFdn4qvEOKWDeMMq-DYcfGqzjNBzXwf7wBp4SB__v9RN-5ORAh4i-Q2hNXt_wCFbsdNIfvx6HEfYP9aLM_g
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxEB4hoIILUCgiPPfAqaph37aPiLcaoqpLq9xWfsyKSCFEJETi3-NxTHJohcRtd2XvrmZsfzP2zHwAx2mSKecml0zorGA554qpPJGsTJHbJMm49aWU_rZ5pyO6XflrAX7McmEQ0Qef4Qld-rN8-2ReaKvs1E2IklM-1VKR52k8zdaaV9YTng6PbAJWSNENZ5hJLE_b178rCuOSJ6nMC-4Lvc5RyNOq_LMWe4C5Wv_cr23AWjAko7Op5r_CAg42YSVwmj-8bsKXa0_a-7oF1ZlVQ1rWogp7o8eeiSoHWH1klFowwH50QV7xJAzCaNJT0fn83n2kGjr3F91DArqI6NP63-DP1eX9-Q0LZArMOEQfM9EkWpXOvHILSl5qbDK0uohtpixPdSx50TjwN42VptQGS1EYqzXnmKkGG4nZNiwOnga4A1EpjHLSdi9z1pguhMN8RTmsjeCWysG1IH4Xbm1CpXEivOjX3uOIZU36qEkfddBHC77PugynZTY-arxFCpg1DLJvwf67BuswEUe1t0CciSf57v97HcHKzf1du27fdn7uwWpK7rSP79uHxfHzCx7AspmMe6PnQz_a3gDIHdBF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Seismic+Single-Channel+Deconvolution+via+Convolutional+Sparse+Coding+Model&rft.jtitle=IEEE+geoscience+and+remote+sensing+letters&rft.au=Wang%2C+Lingqian&rft.au=Zhou%2C+Hui&rft.au=Wang%2C+Yufeng&rft.au=Yu%2C+Bo&rft.date=2020-08-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1545-598X&rft.eissn=1558-0571&rft.volume=17&rft.issue=8&rft.spage=1415&rft_id=info:doi/10.1109%2FLGRS.2019.2945799&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-598X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-598X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-598X&client=summon