An Efficient Method for Antenna Design Optimization Based on Evolutionary Computation and Machine Learning Techniques

In recent years, various methods from the evolutionary computation (EC) field have been applied to electromagnetic (EM) design problems and have shown promising results. However, due to the high computational cost of the EM simulations, the efficiency of directly using evolutionary algorithms is oft...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on antennas and propagation Ročník 62; číslo 1; s. 7 - 18
Hlavní autori: Bo Liu, Aliakbarian, Hadi, Zhongkun Ma, Vandenbosch, Guy A. E., Gielen, Georges, Excell, Peter
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York, NY IEEE 01.01.2014
Institute of Electrical and Electronics Engineers
Predmet:
ISSN:0018-926X, 1558-2221
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In recent years, various methods from the evolutionary computation (EC) field have been applied to electromagnetic (EM) design problems and have shown promising results. However, due to the high computational cost of the EM simulations, the efficiency of directly using evolutionary algorithms is often very low (e.g., several weeks' optimization time), which limits the application of these methods for many industrial applications. To address this problem, a new method, called surrogate model assisted differential evolution for antenna synthesis (SADEA), is presented in this paper. The key ideas are: (1) A Gaussian Process (GP) surrogate model is constructed on-line to predict the performances of the candidate designs, saving a lot of computationally expensive EM simulations. (2) A novel surrogate model-aware evolutionary search mechanism is proposed, directing effective global search even when a traditional high-quality surrogate model is not available. Three complex antennas and two mathematical benchmark problems are selected as examples. Compared with the widely used differential evolution and particle swarm optimization, SADEA can obtain comparable results, but achieves a 3 to 7 times speed enhancement for antenna design optimization.
AbstractList In recent years, various methods from the evolutionary computation (EC) field have been applied to electromagnetic (EM) design problems and have shown promising results. However, due to the high computational cost of the EM simulations, the efficiency of directly using evolutionary algorithms is often very low (e.g., several weeks' optimization time), which limits the application of these methods for many industrial applications. To address this problem, a new method, called surrogate model assisted differential evolution for antenna synthesis (SADEA), is presented in this paper. The key ideas are: (1) A Gaussian Process (GP) surrogate model is constructed on-line to predict the performances of the candidate designs, saving a lot of computationally expensive EM simulations. (2) A novel surrogate model-aware evolutionary search mechanism is proposed, directing effective global search even when a traditional high-quality surrogate model is not available. Three complex antennas and two mathematical benchmark problems are selected as examples. Compared with the widely used differential evolution and particle swarm optimization, SADEA can obtain comparable results, but achieves a 3 to 7 times speed enhancement for antenna design optimization.
Author Excell, Peter
Aliakbarian, Hadi
Gielen, Georges
Vandenbosch, Guy A. E.
Bo Liu
Zhongkun Ma
Author_xml – sequence: 1
  surname: Bo Liu
  fullname: Bo Liu
  email: b.liu@glyndwr.ac.uk
  organization: Dept. of Comput., Glyndwr Univ., Wrexham, UK
– sequence: 2
  givenname: Hadi
  surname: Aliakbarian
  fullname: Aliakbarian, Hadi
  email: Hadi.Aliakbarian@esat.kuleuven.be
  organization: ESAT, Katholieke Univ. Leuven, Leuven, Belgium
– sequence: 3
  surname: Zhongkun Ma
  fullname: Zhongkun Ma
  email: Zhongkun.Ma@esat.kuleuven.be
  organization: ESAT, Katholieke Univ. Leuven, Leuven, Belgium
– sequence: 4
  givenname: Guy A. E.
  surname: Vandenbosch
  fullname: Vandenbosch, Guy A. E.
  email: Guy.Vandenbosch@esat.kuleuven.be
  organization: ESAT, Katholieke Univ. Leuven, Leuven, Belgium
– sequence: 5
  givenname: Georges
  surname: Gielen
  fullname: Gielen, Georges
  email: Georges.Gielen@esat.kuleuven.be
  organization: ESAT, Katholieke Univ. Leuven, Leuven, Belgium
– sequence: 6
  givenname: Peter
  surname: Excell
  fullname: Excell, Peter
  email: p.excell@glyndwr.ac.uk
  organization: Inst. of Arts, Sci. & Technol., Glyndwr Univ., Wrexham, UK
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28149922$$DView record in Pascal Francis
BookMark eNp9UD1PwzAUtFCRaAs7EosXxhTbcYwzhlI-pFZlKBJb9Oo8t0apU-IUCX49KSkMDEzvvdPd6d4NSM9XHgk552zEOUuvFtnTSDAej4TQsWLJEenzJNGREIL3SJ8xrqNUqJcTMgjhtT2llrJPdpmnE2udcegbOsNmXRXUVjXNfIPeA73F4FaezreN27hPaFzl6Q0ELGi7TN6rcreHoP6g42qz3TUdA3xBZ2DWziOdItTe-RVdoFl797bDcEqOLZQBzw5zSJ7vJovxQzSd3z-Os2lkRBo3kdZFEcO1LIChBStlwdCIpZHSWsMK0AlbLtNYmhRTLRV8Y8YqESPiMtHxkFx2vlsIBkpbgzcu5NvabdrEudBcpqkQLU91PFNXIdRoc-O6T5oaXJlzlu9LztuS833J-aHkVsj-CH-8_5FcdBLXhvylK8WFUjr-AtfjjGg
CODEN IETPAK
CitedBy_id crossref_primary_10_1007_s12648_022_02319_x
crossref_primary_10_3390_electronics14010089
crossref_primary_10_1002_jnm_2129
crossref_primary_10_1016_j_measurement_2024_115719
crossref_primary_10_1038_s41598_024_60749_5
crossref_primary_10_1109_LAWP_2024_3421549
crossref_primary_10_3390_electronics9081307
crossref_primary_10_1109_MAP_2019_2907887
crossref_primary_10_1109_ACCESS_2021_3137198
crossref_primary_10_1109_TAP_2024_3486465
crossref_primary_10_1017_S1759078723001009
crossref_primary_10_1016_j_swevo_2025_101879
crossref_primary_10_1080_09205071_2017_1402713
crossref_primary_10_1109_TETCI_2018_2864747
crossref_primary_10_1038_s41598_022_24250_1
crossref_primary_10_1109_ACCESS_2018_2866046
crossref_primary_10_1109_TAP_2022_3153688
crossref_primary_10_1109_TAP_2022_3226343
crossref_primary_10_1002_mop_31572
crossref_primary_10_1109_TAP_2023_3234167
crossref_primary_10_1109_TAP_2022_3182693
crossref_primary_10_1109_TAP_2023_3240563
crossref_primary_10_1109_TAP_2022_3140497
crossref_primary_10_1049_mia2_12257
crossref_primary_10_1088_1361_6463_aba64f
crossref_primary_10_3390_bioengineering12020138
crossref_primary_10_1109_ACCESS_2021_3063523
crossref_primary_10_1109_TMTT_2024_3358300
crossref_primary_10_1038_s41598_024_70246_4
crossref_primary_10_1007_s11047_018_9699_5
crossref_primary_10_1109_JMMCT_2024_3385451
crossref_primary_10_1038_s41598_023_44023_8
crossref_primary_10_1109_TAP_2023_3269883
crossref_primary_10_1109_JSSC_2023_3276315
crossref_primary_10_1109_ACCESS_2022_3190508
crossref_primary_10_1049_iet_map_2018_5009
crossref_primary_10_1109_LAWP_2020_3026822
crossref_primary_10_1002_dac_5995
crossref_primary_10_1016_j_jestch_2023_101363
crossref_primary_10_1016_j_ymssp_2021_107976
crossref_primary_10_1109_MAP_2016_2630041
crossref_primary_10_1016_j_eswa_2021_114951
crossref_primary_10_1109_TAP_2023_3316673
crossref_primary_10_1016_j_photonics_2021_100947
crossref_primary_10_1109_TAP_2024_3490836
crossref_primary_10_3390_electronics10010010
crossref_primary_10_1016_j_engappai_2024_109381
crossref_primary_10_1016_j_knosys_2023_111296
crossref_primary_10_1016_j_neucom_2015_09_011
crossref_primary_10_1002_mmce_21184
crossref_primary_10_1007_s13369_023_07830_9
crossref_primary_10_1109_TAP_2022_3209660
crossref_primary_10_1109_ACCESS_2019_2947778
crossref_primary_10_1109_ACCESS_2023_3317371
crossref_primary_10_1109_TAP_2021_3137523
crossref_primary_10_1109_TAP_2022_3209281
crossref_primary_10_1109_TAP_2019_2963570
crossref_primary_10_3390_electronics9050818
crossref_primary_10_1109_TIE_2017_2782203
crossref_primary_10_1002_dac_4414
crossref_primary_10_1109_LAWP_2024_3382028
crossref_primary_10_3390_electronics14132705
crossref_primary_10_1109_TED_2023_3303284
crossref_primary_10_1049_joe_2016_0123
crossref_primary_10_1016_j_heliyon_2023_e21596
crossref_primary_10_1109_LAWP_2022_3187174
crossref_primary_10_1109_TAP_2024_3373196
crossref_primary_10_1007_s00500_023_08886_3
crossref_primary_10_1109_TAP_2024_3388710
crossref_primary_10_1109_TAP_2023_3247179
crossref_primary_10_1002_mmce_23012
crossref_primary_10_1109_TAP_2020_3031474
crossref_primary_10_1109_TAP_2022_3222076
crossref_primary_10_1016_j_ins_2024_121408
crossref_primary_10_1016_j_knosys_2022_109745
crossref_primary_10_1109_TAP_2021_3051034
crossref_primary_10_1007_s10762_020_00711_4
crossref_primary_10_1109_TAP_2023_3317982
crossref_primary_10_1109_TAP_2022_3153080
crossref_primary_10_1063_1_5033327
crossref_primary_10_1109_TAP_2022_3161389
crossref_primary_10_3390_ai5040129
crossref_primary_10_1038_s41598_024_80182_y
crossref_primary_10_1109_TAP_2021_3069524
crossref_primary_10_1038_s41598_025_87465_y
crossref_primary_10_1109_TAP_2020_3044393
crossref_primary_10_1109_TAP_2022_3211732
crossref_primary_10_1109_TEMC_2019_2920993
crossref_primary_10_1016_j_jestch_2025_102124
crossref_primary_10_1109_ACCESS_2024_3360852
crossref_primary_10_1109_TPS_2025_3534289
crossref_primary_10_1049_iet_map_2017_1171
crossref_primary_10_1109_TAP_2023_3270716
crossref_primary_10_1109_LAWP_2019_2912459
crossref_primary_10_1109_TCAD_2023_3282570
crossref_primary_10_1109_JRFID_2018_2880457
crossref_primary_10_1016_j_jcde_2017_04_001
crossref_primary_10_1109_TCAD_2022_3221694
crossref_primary_10_1016_j_phycom_2018_06_001
crossref_primary_10_1109_TAP_2021_3069491
crossref_primary_10_1109_JMMCT_2025_3544270
crossref_primary_10_1109_TAP_2022_3145462
crossref_primary_10_1109_ACCESS_2019_2920945
crossref_primary_10_1038_s41598_022_12011_z
crossref_primary_10_1016_j_ins_2022_09_007
crossref_primary_10_1109_LAWP_2024_3447693
crossref_primary_10_3390_electronics13020383
crossref_primary_10_1038_s41598_023_35470_4
crossref_primary_10_1109_TAP_2020_3012792
crossref_primary_10_1109_TAP_2023_3341226
crossref_primary_10_1109_TMTT_2022_3184024
crossref_primary_10_1038_s41467_024_54178_1
crossref_primary_10_1038_s41598_024_68010_9
crossref_primary_10_1002_mop_33704
crossref_primary_10_1109_TMC_2023_3253135
crossref_primary_10_1109_TAP_2021_3138487
crossref_primary_10_1016_j_knosys_2023_110557
crossref_primary_10_1016_j_aeue_2020_153466
crossref_primary_10_3390_pr8091170
crossref_primary_10_1109_TAP_2024_3370296
crossref_primary_10_1016_j_eswa_2022_119131
crossref_primary_10_1016_j_jcde_2016_11_002
crossref_primary_10_1016_j_knosys_2021_107189
crossref_primary_10_1007_s10586_018_2163_6
crossref_primary_10_1155_2018_5140413
crossref_primary_10_1016_j_aeue_2021_153994
crossref_primary_10_3390_app9132589
crossref_primary_10_1002_mmce_22356
crossref_primary_10_3390_mi14122172
crossref_primary_10_1080_08839514_2024_2440836
crossref_primary_10_1109_LAWP_2024_3475628
crossref_primary_10_1109_LMWC_2022_3161979
crossref_primary_10_1109_TAP_2020_3008677
crossref_primary_10_1109_TAP_2022_3157895
crossref_primary_10_1109_TCAD_2019_2961322
crossref_primary_10_1109_JMMCT_2020_3020780
crossref_primary_10_1016_j_aeue_2020_153597
crossref_primary_10_1109_ACCESS_2020_2988891
crossref_primary_10_1109_TAP_2023_3346493
crossref_primary_10_1016_j_measurement_2024_115846
crossref_primary_10_1109_TAP_2022_3185705
crossref_primary_10_1080_08839514_2021_1994217
crossref_primary_10_1109_TAP_2024_3481663
crossref_primary_10_1109_TAP_2021_3118784
crossref_primary_10_1109_TCYB_2021_3120188
crossref_primary_10_1109_ACCESS_2020_2990455
crossref_primary_10_1109_TEVC_2014_2375933
Cites_doi 10.1109/CEC.2006.1688312
10.1109/8.155746
10.1023/A:1008306431147
10.1109/TMAG.2009.2012695
10.1109/AICI.2009.307
10.1109/TAP.2007.891552
10.1007/978-1-4757-3799-8
10.1145/2228360.2228457
10.1109/TEVC.2002.800884
10.1109/TMTT.2003.820891
10.1109/TAP.2007.893400
10.1109/TAP.2010.2103029
10.1109/TAP.2011.2109678
10.1109/TAP.2011.2109350
10.1109/TAP.2007.891306
10.1109/APS.2010.5561993
10.1109/TEVC.2005.851274
10.1007/s00500-003-0328-5
10.1109/JSSC.2007.900236
10.1109/TAP.2012.2194685
10.1080/00401706.1987.10488205
10.1029/2010JA016375
10.1109/TAP.2004.823969
10.1109/TEVC.2009.2027359
10.1109/TMTT.2003.820904
10.1109/TCAD.2011.2162067
10.1109/TSMCC.2004.841917
10.1109/MAP.2011.5773566
10.1109/TSMCC.2005.855506
10.1109/TAP.2008.2009775
10.1109/TED.2005.850668
10.1109/TEVC.2005.859463
10.1109/8.805906
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright_xml – notice: 2015 INIST-CNRS
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
DOI 10.1109/TAP.2013.2283605
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
Physics
EISSN 1558-2221
EndPage 18
ExternalDocumentID 28149922
10_1109_TAP_2013_2283605
6612668
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
E.L
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TAF
TN5
VH1
VJK
VOH
AAYXX
CITATION
AAYOK
IQODW
RIG
ID FETCH-LOGICAL-c293t-88dd3a74da0efaf44d0ec2bc44ffc0da850bb934c9e9846ac0da8cf623eeeb583
IEDL.DBID RIE
ISICitedReferencesCount 221
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000329516700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-926X
IngestDate Wed Apr 02 07:37:51 EDT 2025
Tue Nov 18 19:41:25 EST 2025
Sat Nov 29 05:48:15 EST 2025
Tue Aug 26 16:50:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Performance evaluation
Electromagnetism
Evolutionary algorithm
Industrial application
Evolutionary computation
Global optimum
Antenna design optimization
Computational complexity
Particle swarm optimization
efficient global optimization
differential evolution
Gaussian process
Biomimetics
Simulation
surrogate model assisted evolutionary algorithm
On line processing
Artificial intelligence
expensive black-box optimization
Antenna
Antenna synthesis
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-88dd3a74da0efaf44d0ec2bc44ffc0da850bb934c9e9846ac0da8cf623eeeb583
PageCount 12
ParticipantIDs crossref_primary_10_1109_TAP_2013_2283605
ieee_primary_6612668
pascalfrancis_primary_28149922
crossref_citationtrail_10_1109_TAP_2013_2283605
PublicationCentury 2000
PublicationDate 2014-Jan.
2014-01-00
2014
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – month: 01
  year: 2014
  text: 2014-Jan.
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
PublicationTitle IEEE transactions on antennas and propagation
PublicationTitleAbbrev TAP
PublicationYear 2014
Publisher IEEE
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
References ref35
ref13
price (ref4) 2005
ref34
ref37
ref15
ref36
ref14
ref30
ref33
ref11
ref32
ref10
ma (ref40) 2012; 21
ref2
ref1
ref17
ref38
ref16
ref19
ref18
gorissen (ref31) 2010; 11
dennis (ref23) 1997
clerc (ref5) 2010
koziel (ref12) 2010
emmerich (ref25) 2006; 10
ref24
santner (ref20) 2003
ref26
volski (ref39) 2004
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref3
ref6
References_xml – ident: ref37
  doi: 10.1109/CEC.2006.1688312
– ident: ref32
  doi: 10.1109/8.155746
– ident: ref18
  doi: 10.1023/A:1008306431147
– ident: ref9
  doi: 10.1109/TMAG.2009.2012695
– ident: ref30
  doi: 10.1109/AICI.2009.307
– ident: ref8
  doi: 10.1109/TAP.2007.891552
– year: 2003
  ident: ref20
  publication-title: The Design and Analysis of Computer Experiments
  doi: 10.1007/978-1-4757-3799-8
– ident: ref10
  doi: 10.1145/2228360.2228457
– ident: ref21
  doi: 10.1109/TEVC.2002.800884
– ident: ref17
  doi: 10.1109/TMTT.2003.820891
– ident: ref33
  doi: 10.1109/TAP.2007.893400
– ident: ref38
  doi: 10.1109/TAP.2010.2103029
– ident: ref6
  doi: 10.1109/TAP.2011.2109678
– ident: ref7
  doi: 10.1109/TAP.2011.2109350
– ident: ref1
  doi: 10.1109/TAP.2007.891306
– start-page: 277
  year: 2004
  ident: ref39
  article-title: Compact low-cost 4 elements microstrip antenna array for WLAN
  publication-title: Proc IEEE Eur Conf Wireless Technol
– ident: ref15
  doi: 10.1109/APS.2010.5561993
– ident: ref19
  doi: 10.1109/TEVC.2005.851274
– ident: ref22
  doi: 10.1007/s00500-003-0328-5
– ident: ref35
  doi: 10.1109/JSSC.2007.900236
– ident: ref34
  doi: 10.1109/TAP.2012.2194685
– start-page: 330
  year: 1997
  ident: ref23
  article-title: Managing approximation models in optimization
  publication-title: Multidisciplinary Design Optimization State-of-the-Art
– ident: ref29
  doi: 10.1080/00401706.1987.10488205
– ident: ref27
  doi: 10.1029/2010JA016375
– year: 2010
  ident: ref5
  publication-title: Particle Swarm Optimization
– ident: ref3
  doi: 10.1109/TAP.2004.823969
– ident: ref24
  doi: 10.1109/TEVC.2009.2027359
– volume: 11
  start-page: 2051
  year: 2010
  ident: ref31
  article-title: A surrogate modeling and adaptive sampling toolbox for computer based design
  publication-title: J Mach Learn Res
– ident: ref13
  doi: 10.1109/TMTT.2003.820904
– ident: ref14
  doi: 10.1109/TCAD.2011.2162067
– ident: ref28
  doi: 10.1109/TSMCC.2004.841917
– ident: ref2
  doi: 10.1109/MAP.2011.5773566
– ident: ref26
  doi: 10.1109/TSMCC.2005.855506
– ident: ref11
  doi: 10.1109/TAP.2008.2009775
– year: 2005
  ident: ref4
  publication-title: Differential Evolution A Practical Approach to Global Optimization
– start-page: 1
  year: 2010
  ident: ref12
  article-title: Numerically efficient design optimization of a printed 2.45 GHz Yagi antenna
  publication-title: Proc 2nd Eur Conf Antennas Propag (EuCAP)
– ident: ref36
  doi: 10.1109/TED.2005.850668
– volume: 10
  start-page: 421
  year: 2006
  ident: ref25
  article-title: Single-and multiobjective evolutionary optimization assisted by Gaussian random field metamodels
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2005.859463
– ident: ref16
  doi: 10.1109/8.805906
– volume: 21
  start-page: 505
  year: 2012
  ident: ref40
  article-title: Comparison of weighted sum fitness functions for PSO optimization of wideband medium-gain antennas
  publication-title: Radioengineering
SSID ssj0014844
Score 2.5642078
Snippet In recent years, various methods from the evolutionary computation (EC) field have been applied to electromagnetic (EM) design problems and have shown...
SourceID pascalfrancis
crossref
ieee
SourceType Index Database
Enrichment Source
Publisher
StartPage 7
SubjectTerms Antenna design optimization
antenna synthesis
Antennas
Applied classical electromagnetism
Applied sciences
Computational modeling
differential evolution
efficient global optimization
Electromagnetic wave propagation, radiowave propagation
Electromagnetism; electron and ion optics
Exact sciences and technology
expensive black-box optimization
Fundamental areas of phenomenology (including applications)
Gaussian process
Mathematical model
Optimization
Physics
Predictive models
Radiocommunications
surrogate model assisted evolutionary algorithm
Telecommunications
Telecommunications and information theory
Training data
Title An Efficient Method for Antenna Design Optimization Based on Evolutionary Computation and Machine Learning Techniques
URI https://ieeexplore.ieee.org/document/6612668
Volume 62
WOSCitedRecordID wos000329516700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2221
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014844
  issn: 0018-926X
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH9sw4Me_Jri_Bg5eBHs1rVpmxyrbnhwc4cJu5U0SUXQTvYF_ve-pF2ZIIK30Cal5JfkvZe8_H4A12HopWnIcfCqQGOAEnGHBynDxTD0IqGk9qXlmX2KRiM2nfJxDW6ruzBaa5t8pjumaM_y1UyuzFZZF20J2hNWh3oUhcVdrerEgDJaMC73cAJ74XRzJOny7iQemxwuv2OoXkIjVLdlgqymismIFAvslKxQs9gyMYOD__3cIeyXriSJC-yPoKbzY9jbIhhswirOSd-SRGBbMrRq0QTdVBKbzPVckAebwEGeceH4KG9kkjs0bIpgob8ux6WYf5FC_qGoIXJFhjYLU5OSoPWVTDZssIsTeBn0J_ePTim04Ei09kuHMaV8EVElXJ2JjFLlaumlktIsk64SLHDTlPtUcs3RXxH2mczQc8JeSAPmn0Ijn-X6DEiPZxhSMp9FXNM04ExJDMGiXuYLphjrtaC76ftElizkRgzjPbHRiMsTRCsxaCUlWi24qVp8Fgwcf9RtGmCqeiUmLWj_gLd67zEMELnnnf_e7gJ28eu02HG5hMZyvtJXsCPXy7fFvG3H3ze2uto0
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7MKagP3sV5zYMvgnNdm7bJY9UNxW3uocLeSpqkImiVXQT_vSdpVyaI4FtoE1ryJTnnJCffB3AeBG6aBhwHr_I1Bighb3I_ZbgYBm4olNSetDyzvXAwYKMRH9bgsroLo7W2yWf6yhTtWb56lzOzVdZCW4L2hC3Bsk-p6xS3taozA8powbncxinsBqP5oaTDW3E0NFlc3pUhewmMVN2CEbKqKiYnUkywW7JCz2LByHQ3__d7W7BROpMkKtDfhprOd2B9gWJwF2ZRTjqWJgLbkr7ViyboqJLI5K7ngtzaFA7yiEvHW3knk1yjaVMEC53PcmSK8RcpBCCKGiJXpG_zMDUpKVqfSTzng53swVO3E9_cNUuphaZEez9tMqaUJ0KqhKMzkVGqHC3dVFKaZdJRgvlOmnKPSq45eizCPpMZ-k7YC6nPvH2o5--5PgDS5hkGlcxjIdc09TlTEoOwsJ15ginG2g1ozfs-kSUPuZHDeE1sPOLwBNFKDFpJiVYDLqoWHwUHxx91dw0wVb0Skwac_oC3eu8yDBG56x7-3u4MVu_ifi_p3Q8ejmANv0SL_ZdjqE_HM30CK_Jz-jIZn9qx-A00Pt17
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Efficient+Method+for+Antenna+Design+Optimization+Based+on+Evolutionary+Computation+and+Machine+Learning+Techniques&rft.jtitle=IEEE+transactions+on+antennas+and+propagation&rft.au=BO+LIU&rft.au=ALIAKBARIAN%2C+Hadi&rft.au=ZHONGKUN+MA&rft.au=VANDENBOSCH%2C+Guy+A.+E&rft.date=2014&rft.pub=Institute+of+Electrical+and+Electronics+Engineers&rft.issn=0018-926X&rft.volume=62&rft.issue=1&rft.spage=7&rft.epage=18&rft_id=info:doi/10.1109%2FTAP.2013.2283605&rft.externalDBID=n%2Fa&rft.externalDocID=28149922
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-926X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-926X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-926X&client=summon