FMM/GPU-Accelerated Boundary Element Method for Computational Magnetics and Electrostatics
A fast multipole method (FMM)/graphics processing unit-accelerated boundary element method (BEM) for computational magnetics and electrostatics via the Laplace equation is presented. The BEM is an integral method, but the FMM is typically designed around monopole and dipole sources. To apply the FMM...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on magnetics Jg. 53; H. 12; S. 1 - 11 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.12.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 0018-9464, 1941-0069 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | A fast multipole method (FMM)/graphics processing unit-accelerated boundary element method (BEM) for computational magnetics and electrostatics via the Laplace equation is presented. The BEM is an integral method, but the FMM is typically designed around monopole and dipole sources. To apply the FMM to the integral expressions in the BEM, the internal data structures and logic of the FMM must be changed. However, this can be difficult. For example, computing the multipole expansions due to the boundary elements requires computing single and double surface integrals over them. Moreover, FMM codes for monopole and dipole sources are widely available and highly optimized. This paper describes a method for applying the FMM unchanged to the integral expressions in the BEM. This method, called the correction factor matrix method, works by approximating the integrals using a quadrature. The quadrature points are treated as monopole and dipole sources, which can be plugged directly into current FMM codes. The FMM is effectively treated as a black box. Inaccuracies from the quadrature are corrected during a correction factor step. The method is derived, and example problems are presented showing accuracy and performance. |
|---|---|
| AbstractList | A fast multipole method (FMM)/graphics processing unit-accelerated boundary element method (BEM) for computational magnetics and electrostatics via the Laplace equation is presented. The BEM is an integral method, but the FMM is typically designed around monopole and dipole sources. To apply the FMM to the integral expressions in the BEM, the internal data structures and logic of the FMM must be changed. However, this can be difficult. For example, computing the multipole expansions due to the boundary elements requires computing single and double surface integrals over them. Moreover, FMM codes for monopole and dipole sources are widely available and highly optimized. This paper describes a method for applying the FMM unchanged to the integral expressions in the BEM. This method, called the correction factor matrix method, works by approximating the integrals using a quadrature. The quadrature points are treated as monopole and dipole sources, which can be plugged directly into current FMM codes. The FMM is effectively treated as a black box. Inaccuracies from the quadrature are corrected during a correction factor step. The method is derived, and example problems are presented showing accuracy and performance. |
| Author | Adelman, Ross Duraiswami, Ramani Gumerov, Nail A. |
| Author_xml | – sequence: 1 givenname: Ross surname: Adelman fullname: Adelman, Ross email: ross.n.adelman.civ@mail.mil organization: Army Res. Lab., Adelphi, MD, USA – sequence: 2 givenname: Nail A. surname: Gumerov fullname: Gumerov, Nail A. organization: Inst. for Adv. Comput. Studies, Univ. of Maryland, College Park, MD, USA – sequence: 3 givenname: Ramani surname: Duraiswami fullname: Duraiswami, Ramani organization: Inst. for Adv. Comput. Studies, Univ. of Maryland, College Park, MD, USA |
| BookMark | eNp9UD1PwzAUtBBIlI8fgFgiMaf1c-y4HktFC1IjGNqFJXKcZ0iVxsV2B_49iVoxMDA9Pd3de3d3Rc471yEhd0DHAFRN1sVsOWYU5JhJJpSAMzICxSGlNFfnZEQpTFPFc35JrkLY9isXQEfkfVEUk-XbJp0Zgy16HbFOHt2hq7X_Tp5a3GEXkwLjp6sT63wyd7v9IerYuE63SaE_OoyNCYnu6oFuondhgE24IRdWtwFvT_OabBZP6_lzunpdvsxnq9QwlcV0KjitMi4ryay2gDTXFddWSszrqhbGcqytQSFqxTPocQ2MUqGhsiLPmM2uycPx7t67rwOGWG7dwffuQslA8kxJyETPgiPL9AaDR1vufbPrQ5ZAy6HCcqiwHCosTxX2GvlHY5pj9Oh10_6rvD8qG0T8_TSljKne9A_dAoDB |
| CODEN | IEMGAQ |
| CitedBy_id | crossref_primary_10_1016_j_advengsoft_2023_103497 crossref_primary_10_3390_inventions8020055 crossref_primary_10_1109_TMAG_2020_3019634 crossref_primary_10_1016_j_elstat_2024_103938 crossref_primary_10_1016_j_enganabound_2019_05_019 crossref_primary_10_1177_1094342020976783 crossref_primary_10_1007_s11075_019_00781_z crossref_primary_10_1016_j_cpc_2023_108825 crossref_primary_10_1016_j_jocs_2023_102103 crossref_primary_10_1109_JSEN_2021_3099984 crossref_primary_10_1016_j_jcp_2023_112118 crossref_primary_10_1109_TIE_2018_2860529 crossref_primary_10_1016_j_jcp_2021_110673 crossref_primary_10_1007_s00170_022_09154_8 crossref_primary_10_1016_j_cpc_2024_109165 |
| Cites_doi | 10.1016/j.enganabound.2012.07.004 10.1016/j.cpc.2012.09.011 10.1109/TAP.2014.2380438 10.1145/2063384.2063432 10.1007/s00791-005-0010-9 10.1109/8.884486 10.1121/1.3257598 10.1137/0907058 10.2514/1.I010141 10.1121/1.3021297 10.1109/TAP.2016.2546951 10.1006/jcph.1999.6355 10.1126/science.298.5599.1698b 10.1109/TAP.2015.2498945 10.1109/22.310584 10.1109/TAP.1984.1143304 10.1098/rspa.1971.0097 10.1109/MAP.2010.5723240 10.1137/S1064827595296288 10.1109/IAS.2015.7356747 10.1016/0021-9991(87)90140-9 10.1109/TAP.2015.2507176 10.1201/9781420035254 10.1016/S0898-1221(01)00238-3 10.1109/43.97624 10.1109/TAP.1982.1142818 10.1109/CEFC-06.2006.1632881 10.1109/TMAG.2007.891413 10.1016/j.jcp.2008.05.023 10.1109/8.247786 10.1109/TAP.1979.1142171 10.1016/j.jcp.2013.01.021 10.1017/CBO9780511810329 10.1016/0307-904X(89)90093-0 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8BQ 8FD JG9 L7M |
| DOI | 10.1109/TMAG.2017.2725951 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Materials Research Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX Electronics & Communications Abstracts |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1941-0069 |
| EndPage | 11 |
| ExternalDocumentID | 10_1109_TMAG_2017_2725951 8022956 |
| Genre | orig-research |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TN5 TWZ VH1 VJK XXG AAYXX CITATION 7SP 7U5 8BQ 8FD JG9 L7M RIG |
| ID | FETCH-LOGICAL-c293t-8540b347b72faf1e06ab4af77e6dbd5cf4edfce55d94311e0a12005a1bf5632f3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 18 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000416212500017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-9464 |
| IngestDate | Mon Jun 30 10:15:37 EDT 2025 Tue Nov 18 21:01:00 EST 2025 Sat Nov 29 06:40:59 EST 2025 Tue Aug 26 16:43:26 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-8540b347b72faf1e06ab4af77e6dbd5cf4edfce55d94311e0a12005a1bf5632f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4958-2526 |
| PQID | 2174397135 |
| PQPubID | 85461 |
| PageCount | 11 |
| ParticipantIDs | crossref_primary_10_1109_TMAG_2017_2725951 ieee_primary_8022956 proquest_journals_2174397135 crossref_citationtrail_10_1109_TMAG_2017_2725951 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-12-01 |
| PublicationDateYYYYMMDD | 2017-12-01 |
| PublicationDate_xml | – month: 12 year: 2017 text: 2017-12-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on magnetics |
| PublicationTitleAbbrev | TMAG |
| PublicationYear | 2017 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref34 ref12 ref37 ref15 ref14 ref31 ref30 ref33 ref11 ref32 ref10 deng (ref36) 2010 ref2 ref39 ref38 ref16 ref19 ref18 jackson (ref25) 1999 ref24 ref23 ref26 ref20 ref22 ref21 ref28 ref27 harrington (ref1) 1968 ref29 ref8 ref7 (ref17) 2015 ref9 ref4 ref6 ref5 gibson (ref3) 2008 |
| References_xml | – ident: ref19 doi: 10.1016/j.enganabound.2012.07.004 – ident: ref16 doi: 10.1016/j.cpc.2012.09.011 – year: 2008 ident: ref3 publication-title: The Method of Moments in Electromagnetics – ident: ref22 doi: 10.1109/TAP.2014.2380438 – ident: ref15 doi: 10.1145/2063384.2063432 – ident: ref18 doi: 10.1007/s00791-005-0010-9 – ident: ref23 doi: 10.1109/8.884486 – ident: ref21 doi: 10.1121/1.3257598 – ident: ref11 doi: 10.1137/0907058 – ident: ref8 doi: 10.2514/1.I010141 – ident: ref20 doi: 10.1121/1.3021297 – ident: ref37 doi: 10.1109/TAP.2016.2546951 – ident: ref13 doi: 10.1006/jcph.1999.6355 – year: 2015 ident: ref17 publication-title: Courant Mathematics and Computing Laboratory Software – ident: ref6 doi: 10.1126/science.298.5599.1698b – ident: ref33 doi: 10.1109/TAP.2015.2498945 – year: 2010 ident: ref36 article-title: Quadrature formulas in two dimensions – ident: ref10 doi: 10.1109/22.310584 – ident: ref29 doi: 10.1109/TAP.1984.1143304 – ident: ref26 doi: 10.1098/rspa.1971.0097 – ident: ref4 doi: 10.1109/MAP.2010.5723240 – ident: ref34 doi: 10.1137/S1064827595296288 – ident: ref39 doi: 10.1109/IAS.2015.7356747 – ident: ref12 doi: 10.1016/0021-9991(87)90140-9 – year: 1968 ident: ref1 publication-title: Field Computation by Moment Methods – ident: ref24 doi: 10.1109/TAP.2015.2507176 – ident: ref2 doi: 10.1201/9781420035254 – ident: ref35 doi: 10.1016/S0898-1221(01)00238-3 – ident: ref9 doi: 10.1109/43.97624 – ident: ref28 doi: 10.1109/TAP.1982.1142818 – ident: ref38 doi: 10.1109/CEFC-06.2006.1632881 – ident: ref5 doi: 10.1109/TMAG.2007.891413 – ident: ref14 doi: 10.1016/j.jcp.2008.05.023 – year: 1999 ident: ref25 publication-title: Classical Electrodynamics – ident: ref31 doi: 10.1109/8.247786 – ident: ref27 doi: 10.1109/TAP.1979.1142171 – ident: ref7 doi: 10.1016/j.jcp.2013.01.021 – ident: ref32 doi: 10.1017/CBO9780511810329 – ident: ref30 doi: 10.1016/0307-904X(89)90093-0 |
| SSID | ssj0014510 |
| Score | 2.336586 |
| Snippet | A fast multipole method (FMM)/graphics processing unit-accelerated boundary element method (BEM) for computational magnetics and electrostatics via the Laplace... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Black boxes Boundary element method Boundary element methods boundary integral equations Computation Data structures Dipoles Electrostatics fast solvers Galerkin method Graphics processing units Integral equations Integrals Laplace equation Laplace equations Magnetism Mathematical analysis Method of moments Monopoles Nonlinear programming Parallel processing parallel programming |
| Title | FMM/GPU-Accelerated Boundary Element Method for Computational Magnetics and Electrostatics |
| URI | https://ieeexplore.ieee.org/document/8022956 https://www.proquest.com/docview/2174397135 |
| Volume | 53 |
| WOSCitedRecordID | wos000416212500017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1941-0069 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014510 issn: 0018-9464 databaseCode: RIE dateStart: 19650101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5cUdCDr1VcX-TgSazbtE3THlfZXS-VPawgXkqahwjSlX0I_nszSV0URfBW2kkp_drMJDPffADneabsHBdXAc1SESSa5kHGmAgipilVUpjQeLEJfneXPTzkoxW4XHJhtNau-Exf4aHL5auJXOBWWRdpoTaeb0GL89RztZYZg4RRTzehGcrGJ00Gk4Z5d1z0hljExa8ibqN9Rr_5ICeq8mMmdu5lsP2_B9uBrSaMJD2P-y6s6HoPNr80F9yDdVfcKWdteBwURXc4ug96Ulovg80hFLl2ekrTd9L3BeSkcFrSxAaxxEs9NNuEpBBPNVIdZ0TUCs1RNweJSPbUPtwP-uOb26DRVAikdexzC0QSVnHCKx4ZYagOU1ElwnCuU1UpJk2ilZGaMZXb0MJeFxT3nQStDEvjyMQHsFpPan0IJOHahotRZbKcYpc2kUmOpVVcGplmlHUg_HzLpWwajqPuxUvpFh5hXiIwJQJTNsB04GI55NV32_jLuI1ILA0bEDpw8gll2fyPs9IvvFCO8Oj3Ucewgff2hSonsDqfLvQprMm3-fNseuY-tQ_vvtBw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED6Vbgh42FgBUeg2P-wJERqndpw8lonCNFL1oUiIl8jxj2kSCqgtSPz3-Oy0AjEh7S1KzkqUL_GdfffdB_Ajz7Sb4wZVRLNURszQPMo4l1HCDaVaSRvbIDYhxuPs-jqftOB4xYUxxvjiM3OChz6Xr-_UA26V9ZEW6uL5NfjAGUviwNZa5QwYp4FwQjMUjmdNDpPGeX9aDM-xjEucJMLF-5y-8kJeVuXNXOwdzOjz_z3aNnxqAkkyDMh_gZapO7D1or1gB9Z9eaea78DNqCj655OraKiU8zPYHkKTU6-oNHsiZ6GEnBReTZq4MJYEsYdmo5AU8k-NZMc5kbVGc1TOQSqSO7ULV6Oz6c-LqFFViJRz7QsHBYurAROVSKy01MSprJi0QphUV5ory4y2ynCucxdcuOuS4s6TpJXl6SCxgz1o13e12QfChHEBY1LZLKfYp01mSmBxlVBWpRnlXYiXb7lUTctxVL64Lf3SI85LBKZEYMoGmC4crYbch34b7xnvIBIrwwaELvSWUJbNHzkvw9ILBQkP_j3qO2xcTIvL8vLX-PchbOJ9QtlKD9qL2YP5Ch_V4-LvfPbNf3bP8F7Ttw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FMM%2FGPU-Accelerated+Boundary+Element+Method+for+Computational+Magnetics+and+Electrostatics&rft.jtitle=IEEE+transactions+on+magnetics&rft.au=Adelman%2C+Ross&rft.au=Gumerov%2C+Nail+A&rft.au=Duraiswami%2C+Ramani&rft.date=2017-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9464&rft.eissn=1941-0069&rft.volume=53&rft.issue=12&rft.spage=1&rft_id=info:doi/10.1109%2FTMAG.2017.2725951&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9464&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9464&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9464&client=summon |