FMM/GPU-Accelerated Boundary Element Method for Computational Magnetics and Electrostatics

A fast multipole method (FMM)/graphics processing unit-accelerated boundary element method (BEM) for computational magnetics and electrostatics via the Laplace equation is presented. The BEM is an integral method, but the FMM is typically designed around monopole and dipole sources. To apply the FMM...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on magnetics Vol. 53; no. 12; pp. 1 - 11
Main Authors: Adelman, Ross, Gumerov, Nail A., Duraiswami, Ramani
Format: Journal Article
Language:English
Published: New York IEEE 01.12.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0018-9464, 1941-0069
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A fast multipole method (FMM)/graphics processing unit-accelerated boundary element method (BEM) for computational magnetics and electrostatics via the Laplace equation is presented. The BEM is an integral method, but the FMM is typically designed around monopole and dipole sources. To apply the FMM to the integral expressions in the BEM, the internal data structures and logic of the FMM must be changed. However, this can be difficult. For example, computing the multipole expansions due to the boundary elements requires computing single and double surface integrals over them. Moreover, FMM codes for monopole and dipole sources are widely available and highly optimized. This paper describes a method for applying the FMM unchanged to the integral expressions in the BEM. This method, called the correction factor matrix method, works by approximating the integrals using a quadrature. The quadrature points are treated as monopole and dipole sources, which can be plugged directly into current FMM codes. The FMM is effectively treated as a black box. Inaccuracies from the quadrature are corrected during a correction factor step. The method is derived, and example problems are presented showing accuracy and performance.
AbstractList A fast multipole method (FMM)/graphics processing unit-accelerated boundary element method (BEM) for computational magnetics and electrostatics via the Laplace equation is presented. The BEM is an integral method, but the FMM is typically designed around monopole and dipole sources. To apply the FMM to the integral expressions in the BEM, the internal data structures and logic of the FMM must be changed. However, this can be difficult. For example, computing the multipole expansions due to the boundary elements requires computing single and double surface integrals over them. Moreover, FMM codes for monopole and dipole sources are widely available and highly optimized. This paper describes a method for applying the FMM unchanged to the integral expressions in the BEM. This method, called the correction factor matrix method, works by approximating the integrals using a quadrature. The quadrature points are treated as monopole and dipole sources, which can be plugged directly into current FMM codes. The FMM is effectively treated as a black box. Inaccuracies from the quadrature are corrected during a correction factor step. The method is derived, and example problems are presented showing accuracy and performance.
Author Adelman, Ross
Duraiswami, Ramani
Gumerov, Nail A.
Author_xml – sequence: 1
  givenname: Ross
  surname: Adelman
  fullname: Adelman, Ross
  email: ross.n.adelman.civ@mail.mil
  organization: Army Res. Lab., Adelphi, MD, USA
– sequence: 2
  givenname: Nail A.
  surname: Gumerov
  fullname: Gumerov, Nail A.
  organization: Inst. for Adv. Comput. Studies, Univ. of Maryland, College Park, MD, USA
– sequence: 3
  givenname: Ramani
  surname: Duraiswami
  fullname: Duraiswami, Ramani
  organization: Inst. for Adv. Comput. Studies, Univ. of Maryland, College Park, MD, USA
BookMark eNp9UD1PwzAUtBBIlI8fgFgiMaf1c-y4HktFC1IjGNqFJXKcZ0iVxsV2B_49iVoxMDA9Pd3de3d3Rc471yEhd0DHAFRN1sVsOWYU5JhJJpSAMzICxSGlNFfnZEQpTFPFc35JrkLY9isXQEfkfVEUk-XbJp0Zgy16HbFOHt2hq7X_Tp5a3GEXkwLjp6sT63wyd7v9IerYuE63SaE_OoyNCYnu6oFuondhgE24IRdWtwFvT_OabBZP6_lzunpdvsxnq9QwlcV0KjitMi4ryay2gDTXFddWSszrqhbGcqytQSFqxTPocQ2MUqGhsiLPmM2uycPx7t67rwOGWG7dwffuQslA8kxJyETPgiPL9AaDR1vufbPrQ5ZAy6HCcqiwHCosTxX2GvlHY5pj9Oh10_6rvD8qG0T8_TSljKne9A_dAoDB
CODEN IEMGAQ
CitedBy_id crossref_primary_10_1016_j_advengsoft_2023_103497
crossref_primary_10_3390_inventions8020055
crossref_primary_10_1109_TMAG_2020_3019634
crossref_primary_10_1016_j_elstat_2024_103938
crossref_primary_10_1016_j_enganabound_2019_05_019
crossref_primary_10_1177_1094342020976783
crossref_primary_10_1007_s11075_019_00781_z
crossref_primary_10_1016_j_cpc_2023_108825
crossref_primary_10_1016_j_jocs_2023_102103
crossref_primary_10_1109_JSEN_2021_3099984
crossref_primary_10_1016_j_jcp_2023_112118
crossref_primary_10_1109_TIE_2018_2860529
crossref_primary_10_1016_j_jcp_2021_110673
crossref_primary_10_1007_s00170_022_09154_8
crossref_primary_10_1016_j_cpc_2024_109165
Cites_doi 10.1016/j.enganabound.2012.07.004
10.1016/j.cpc.2012.09.011
10.1109/TAP.2014.2380438
10.1145/2063384.2063432
10.1007/s00791-005-0010-9
10.1109/8.884486
10.1121/1.3257598
10.1137/0907058
10.2514/1.I010141
10.1121/1.3021297
10.1109/TAP.2016.2546951
10.1006/jcph.1999.6355
10.1126/science.298.5599.1698b
10.1109/TAP.2015.2498945
10.1109/22.310584
10.1109/TAP.1984.1143304
10.1098/rspa.1971.0097
10.1109/MAP.2010.5723240
10.1137/S1064827595296288
10.1109/IAS.2015.7356747
10.1016/0021-9991(87)90140-9
10.1109/TAP.2015.2507176
10.1201/9781420035254
10.1016/S0898-1221(01)00238-3
10.1109/43.97624
10.1109/TAP.1982.1142818
10.1109/CEFC-06.2006.1632881
10.1109/TMAG.2007.891413
10.1016/j.jcp.2008.05.023
10.1109/8.247786
10.1109/TAP.1979.1142171
10.1016/j.jcp.2013.01.021
10.1017/CBO9780511810329
10.1016/0307-904X(89)90093-0
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8BQ
8FD
JG9
L7M
DOI 10.1109/TMAG.2017.2725951
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
Electronics & Communications Abstracts
DatabaseTitleList Materials Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1941-0069
EndPage 11
ExternalDocumentID 10_1109_TMAG_2017_2725951
8022956
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
VH1
VJK
XXG
AAYXX
CITATION
7SP
7U5
8BQ
8FD
JG9
L7M
RIG
ID FETCH-LOGICAL-c293t-8540b347b72faf1e06ab4af77e6dbd5cf4edfce55d94311e0a12005a1bf5632f3
IEDL.DBID RIE
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000416212500017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9464
IngestDate Mon Jun 30 10:15:37 EDT 2025
Tue Nov 18 21:01:00 EST 2025
Sat Nov 29 06:40:59 EST 2025
Tue Aug 26 16:43:26 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-8540b347b72faf1e06ab4af77e6dbd5cf4edfce55d94311e0a12005a1bf5632f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4958-2526
PQID 2174397135
PQPubID 85461
PageCount 11
ParticipantIDs crossref_primary_10_1109_TMAG_2017_2725951
ieee_primary_8022956
proquest_journals_2174397135
crossref_citationtrail_10_1109_TMAG_2017_2725951
PublicationCentury 2000
PublicationDate 2017-12-01
PublicationDateYYYYMMDD 2017-12-01
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-12-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on magnetics
PublicationTitleAbbrev TMAG
PublicationYear 2017
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ref14
ref31
ref30
ref33
ref11
ref32
ref10
deng (ref36) 2010
ref2
ref39
ref38
ref16
ref19
ref18
jackson (ref25) 1999
ref24
ref23
ref26
ref20
ref22
ref21
ref28
ref27
harrington (ref1) 1968
ref29
ref8
ref7
(ref17) 2015
ref9
ref4
ref6
ref5
gibson (ref3) 2008
References_xml – ident: ref19
  doi: 10.1016/j.enganabound.2012.07.004
– ident: ref16
  doi: 10.1016/j.cpc.2012.09.011
– year: 2008
  ident: ref3
  publication-title: The Method of Moments in Electromagnetics
– ident: ref22
  doi: 10.1109/TAP.2014.2380438
– ident: ref15
  doi: 10.1145/2063384.2063432
– ident: ref18
  doi: 10.1007/s00791-005-0010-9
– ident: ref23
  doi: 10.1109/8.884486
– ident: ref21
  doi: 10.1121/1.3257598
– ident: ref11
  doi: 10.1137/0907058
– ident: ref8
  doi: 10.2514/1.I010141
– ident: ref20
  doi: 10.1121/1.3021297
– ident: ref37
  doi: 10.1109/TAP.2016.2546951
– ident: ref13
  doi: 10.1006/jcph.1999.6355
– year: 2015
  ident: ref17
  publication-title: Courant Mathematics and Computing Laboratory Software
– ident: ref6
  doi: 10.1126/science.298.5599.1698b
– ident: ref33
  doi: 10.1109/TAP.2015.2498945
– year: 2010
  ident: ref36
  article-title: Quadrature formulas in two dimensions
– ident: ref10
  doi: 10.1109/22.310584
– ident: ref29
  doi: 10.1109/TAP.1984.1143304
– ident: ref26
  doi: 10.1098/rspa.1971.0097
– ident: ref4
  doi: 10.1109/MAP.2010.5723240
– ident: ref34
  doi: 10.1137/S1064827595296288
– ident: ref39
  doi: 10.1109/IAS.2015.7356747
– ident: ref12
  doi: 10.1016/0021-9991(87)90140-9
– year: 1968
  ident: ref1
  publication-title: Field Computation by Moment Methods
– ident: ref24
  doi: 10.1109/TAP.2015.2507176
– ident: ref2
  doi: 10.1201/9781420035254
– ident: ref35
  doi: 10.1016/S0898-1221(01)00238-3
– ident: ref9
  doi: 10.1109/43.97624
– ident: ref28
  doi: 10.1109/TAP.1982.1142818
– ident: ref38
  doi: 10.1109/CEFC-06.2006.1632881
– ident: ref5
  doi: 10.1109/TMAG.2007.891413
– ident: ref14
  doi: 10.1016/j.jcp.2008.05.023
– year: 1999
  ident: ref25
  publication-title: Classical Electrodynamics
– ident: ref31
  doi: 10.1109/8.247786
– ident: ref27
  doi: 10.1109/TAP.1979.1142171
– ident: ref7
  doi: 10.1016/j.jcp.2013.01.021
– ident: ref32
  doi: 10.1017/CBO9780511810329
– ident: ref30
  doi: 10.1016/0307-904X(89)90093-0
SSID ssj0014510
Score 2.336678
Snippet A fast multipole method (FMM)/graphics processing unit-accelerated boundary element method (BEM) for computational magnetics and electrostatics via the Laplace...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Black boxes
Boundary element method
Boundary element methods
boundary integral equations
Computation
Data structures
Dipoles
Electrostatics
fast solvers
Galerkin method
Graphics processing units
Integral equations
Integrals
Laplace equation
Laplace equations
Magnetism
Mathematical analysis
Method of moments
Monopoles
Nonlinear programming
Parallel processing
parallel programming
Title FMM/GPU-Accelerated Boundary Element Method for Computational Magnetics and Electrostatics
URI https://ieeexplore.ieee.org/document/8022956
https://www.proquest.com/docview/2174397135
Volume 53
WOSCitedRecordID wos000416212500017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0069
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014510
  issn: 0018-9464
  databaseCode: RIE
  dateStart: 19650101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB6sKOjBR6tYX-zBk5i2m2yyybGK1UvEg4XiJexTBEmlaQX_vTubWBRF8BaS3RD2SzLfzM7MB3AWWiZZlMiAMakDFsskwC7eQWoFldQIwTLrxSb43V06mWT3K3CxrIUxxvjkM9PDQ7-Xr6dqgaGyPpaFOj7fghbnSV2rtdwxYDGty01oirLxrNnBpIOs_5APbzCJi_dC7th-TL_ZIC-q8uNP7M3LaPt_D7YDWw2NJMMa911YMWUbNr80F2zDuk_uVFUHHkd53r-5HwdDpZyVweYQmlx6PaXZO7muE8hJ7rWkiSOxpJZ6aMKEJBdPJZY6VkSUGoejbg4WIrlTezAeXT9c3QaNpkKgnGGfB6ljaDJiXPLQCkvNIBGSCcu5SbTUsbLMaKtMHOvMUQt3XVCMOzngbJxEoY32YbWcluYACNeOvWRxFCqrmLVSOnIZWqoUD53PLW0XBp-rXKim4TjqXrwU3vEYZAUCUyAwRQNMF86XU17rbht_De4gEsuBDQhdOP6Esmi-x6qoHS-UIzz8fdYRbOC960SVY1idzxbmBNbU2_y5mp36V-0DF_7Q-g
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB5BWgQcWspDBGi7h54QJl571xsfQ5WEqjjiECTExdpnVQk5KA8k_j07aycCUSH1Ztm7srWf7flmdmY-gB-JY4qlmYoYUyZiXGURdvGOuk5SRa2ULHdBbEKMRt3b2_x6Dc5WtTDW2pB8Zs_xMOzlm4leYKisg2Whns-vwwfOWBLX1VqrPQPGaV1wQrsoHM-aPUwa551x0RtiGpc4T4Tn-5y-skJBVuXNvzgYmMHn_3u0HfjUEEnSq5H_Amu22oXtF-0Fd2EjpHfq2R7cDYqiM7y-iXpaezuD7SEMuQiKStMn0q9TyEkR1KSJp7GkFntoAoWkkH8qLHacEVkZHI7KOViK5E_tw82gP_55GTWqCpH2pn0edT1HUykTSiROOmrjTComnRA2M8pw7Zg1TlvOTe7Jhb8uKUaePHSOZ2ni0gNoVZPKHgIRxvOXnKeJdpo5p5Snl4mjWovEe93KtSFernKpm5bjqHxxXwbXI85LBKZEYMoGmDacrqY81P023hu8h0isBjYgtOFkCWXZfJGzsna9UJDw6N-zvsPm5bi4Kq9-jX4fwxbep05bOYHWfLqwX-Gjfpz_nU2_hdfuGR_K1EE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FMM%2FGPU-Accelerated+Boundary+Element+Method+for+Computational+Magnetics+and+Electrostatics&rft.jtitle=IEEE+transactions+on+magnetics&rft.au=Adelman%2C+Ross&rft.au=Gumerov%2C+Nail+A&rft.au=Duraiswami%2C+Ramani&rft.date=2017-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9464&rft.eissn=1941-0069&rft.volume=53&rft.issue=12&rft.spage=1&rft_id=info:doi/10.1109%2FTMAG.2017.2725951&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9464&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9464&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9464&client=summon