Single-Server Private Linear Transformation: The Joint Privacy Case

This paper introduces the problem of Private Linear Transformation (PLT) which generalizes the problems of private information retrieval and private linear computation. The PLT problem includes one or more remote server(s) storing (identical copies of) <inline-formula> <tex-math notation=&q...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE journal on selected areas in communications Ročník 40; číslo 3; s. 899 - 911
Hlavní autori: Heidarzadeh, Anoosheh, Esmati, Nahid, Sprintson, Alex
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.03.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0733-8716, 1558-0008
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This paper introduces the problem of Private Linear Transformation (PLT) which generalizes the problems of private information retrieval and private linear computation. The PLT problem includes one or more remote server(s) storing (identical copies of) <inline-formula> <tex-math notation="LaTeX">K </tex-math></inline-formula> messages and a user who wants to compute <inline-formula> <tex-math notation="LaTeX">L </tex-math></inline-formula> independent linear combinations of a <inline-formula> <tex-math notation="LaTeX">D </tex-math></inline-formula>-subset of messages. The objective of the user is to perform the computation by downloading minimum possible amount of information from the server(s), while protecting the identities of the <inline-formula> <tex-math notation="LaTeX">D </tex-math></inline-formula> messages required for the computation. In this work, we focus on the single-server setting of the PLT problem when the identities of the <inline-formula> <tex-math notation="LaTeX">D </tex-math></inline-formula> messages required for the computation must be protected jointly. We consider two different models, depending on whether the coefficient matrix of the required <inline-formula> <tex-math notation="LaTeX">L </tex-math></inline-formula> linear combinations generates a Maximum Distance Separable (MDS) code. We prove that the capacity for both models is given by <inline-formula> <tex-math notation="LaTeX">L/(K-D+L) </tex-math></inline-formula>, where the capacity is defined as the supremum of all achievable download rates. Our converse proofs are based on linear-algebraic and information-theoretic arguments. For each model, we also present an achievability scheme that relies on MDS codes.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0733-8716
1558-0008
DOI:10.1109/JSAC.2022.3142293