Mechanical Property Prediction of Wood Using a Backpropagation Neural Network Optimized by Adaptive Fractional-Order Particle Swarm Algorithm

This study proposes a novel LK-BP-AFPSO model for the nondestructive evaluation of wood mechanical properties, combining a backpropagation neural network (BP) with adaptive fractional-order particle swarm optimization (AFPSO) and Liang–Kleeman (LK) information flow theory. The model accurately predi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Forests Ročník 16; číslo 8; s. 1223
Hlavní autoři: Huang, Jiahui, Kuang, Zhufang
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.08.2025
Témata:
ISSN:1999-4907, 1999-4907
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This study proposes a novel LK-BP-AFPSO model for the nondestructive evaluation of wood mechanical properties, combining a backpropagation neural network (BP) with adaptive fractional-order particle swarm optimization (AFPSO) and Liang–Kleeman (LK) information flow theory. The model accurately predicts four key mechanical properties—longitudinal tensile strength (SPG), modulus of elasticity (MOE), bending strength (MOR), and longitudinal compressive strength (CSP)—using only nondestructive physical features. Tested across diverse wood types (fast-growing YKS, red-heart CSH/XXH, and iron-heart XXT), the framework demonstrates strong generalizability, achieving an average prediction accuracy (R2) of 0.986 and reducing mean absolute error (MAE) by 23.7% compared to conventional methods. A critical innovation is the integration of LK causal analysis, which quantifies feature–target relationships via information flow metrics, effectively eliminating 29.5% of spurious correlations inherent in traditional feature selection (e.g., PCA). Experimental results confirm the model’s robustness, particularly for heartwood variants, while its adaptive fractional-order optimization accelerates convergence by 2.1× relative to standard PSO. This work provides a reliable, interpretable tool for wood quality assessment, with direct implications for grading systems and processing optimization in the forestry industry.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1999-4907
1999-4907
DOI:10.3390/f16081223