A Memristive Spiking Neural Network Circuit with Selective Supervised Attention Algorithm
Spiking neural networks (SNNs) are biologically plausible and computationally powerful. The current computing systems based on the von Neumann architecture are almost the hardware basis for the implementation of SNNs. However, performance bottlenecks in computing speed, cost, and energy consumption...
Uloženo v:
| Vydáno v: | IEEE transactions on computer-aided design of integrated circuits and systems Ročník 42; číslo 8; s. 1 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.08.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0278-0070, 1937-4151 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Spiking neural networks (SNNs) are biologically plausible and computationally powerful. The current computing systems based on the von Neumann architecture are almost the hardware basis for the implementation of SNNs. However, performance bottlenecks in computing speed, cost, and energy consumption hinder the hardware development of SNNs. Therefore, efficient non-Neumann hardware computing systems for SNNs remain to be explored. In this paper, a selective supervised algorithm for spiking neurons inspired by the selective attention mechanism is proposed, and a memristive spiking neuron circuit as well as a memristive SNN circuit based on the proposed algorithm are designed. The memristor realizes the learning and memory of the synaptic weight. The proposed algorithm includes a top-down selective supervision method and a bottom-up selective supervision method. Compared with other supervised algorithms, the proposed algorithm has excellent performance on sequence learning. Moreover, top-down and bottom-up attention encoding circuits are designed to provide the hardware foundation for encoding external stimuli into top-down and bottom-up attention spikes, respectively. The proposed memristive SNN circuit can perform classification on the MNIST dataset and the Fashion-MNIST dataset with superior accuracy after learning a small number of labeled samples, which greatly reduces the cost of manual annotation and improves the supervised learning efficiency of the memristive SNN circuit. |
|---|---|
| AbstractList | Spiking neural networks (SNNs) are biologically plausible and computationally powerful. The current computing systems based on the von Neumann architecture are almost the hardware basis for the implementation of SNNs. However, performance bottlenecks in computing speed, cost, and energy consumption hinder the hardware development of SNNs. Therefore, efficient non von Neumann hardware computing systems for SNNs remain to be explored. In this article, a selective supervised algorithm for spiking neurons (SNs) inspired by the selective attention mechanism is proposed, and a memristive SN circuit as well as a memristive SNN circuit based on the proposed algorithm are designed. The memristor realizes the learning and memory of the synaptic weight. The proposed algorithm includes a top-down (TD) selective supervision method and a bottom-up (BU) selective supervision method. Compared with other supervised algorithms, the proposed algorithm has excellent performance on sequence learning. Moreover, TD and BU attention encoding circuits are designed to provide the hardware foundation for encoding external stimuli into TD and BU attention spikes, respectively. The proposed memristive SNN circuit can perform classification on the MNIST dataset and the Fashion-MNIST dataset with superior accuracy after learning a small number of labeled samples, which greatly reduces the cost of manual annotation and improves the supervised learning efficiency of the memristive SNN circuit. Spiking neural networks (SNNs) are biologically plausible and computationally powerful. The current computing systems based on the von Neumann architecture are almost the hardware basis for the implementation of SNNs. However, performance bottlenecks in computing speed, cost, and energy consumption hinder the hardware development of SNNs. Therefore, efficient non-Neumann hardware computing systems for SNNs remain to be explored. In this paper, a selective supervised algorithm for spiking neurons inspired by the selective attention mechanism is proposed, and a memristive spiking neuron circuit as well as a memristive SNN circuit based on the proposed algorithm are designed. The memristor realizes the learning and memory of the synaptic weight. The proposed algorithm includes a top-down selective supervision method and a bottom-up selective supervision method. Compared with other supervised algorithms, the proposed algorithm has excellent performance on sequence learning. Moreover, top-down and bottom-up attention encoding circuits are designed to provide the hardware foundation for encoding external stimuli into top-down and bottom-up attention spikes, respectively. The proposed memristive SNN circuit can perform classification on the MNIST dataset and the Fashion-MNIST dataset with superior accuracy after learning a small number of labeled samples, which greatly reduces the cost of manual annotation and improves the supervised learning efficiency of the memristive SNN circuit. |
| Author | Deng, Zekun Wang, Chunhua Lin, Hairong Sun, Yichuang |
| Author_xml | – sequence: 1 givenname: Zekun surname: Deng fullname: Deng, Zekun organization: College of Computer Science and Electronic Engineering, Hunan University, Changsha, China – sequence: 2 givenname: Chunhua orcidid: 0000-0001-6522-9795 surname: Wang fullname: Wang, Chunhua organization: College of Computer Science and Electronic Engineering, Hunan University, Changsha, China – sequence: 3 givenname: Hairong orcidid: 0000-0003-3506-9780 surname: Lin fullname: Lin, Hairong organization: College of Computer Science and Electronic Engineering, Hunan University, Changsha, China – sequence: 4 givenname: Yichuang orcidid: 0000-0001-8352-2119 surname: Sun fullname: Sun, Yichuang organization: School of Engineering and Computer Science, University of Hertfordshire, Hatfield, U.K |
| BookMark | eNp9kD1PwzAQhi1UJNrCD0AslphTbOfD9hiFT6nA0DIwRa5zKW7TpNhOK_49iYIYGJhenfQ8d6d3gkZ1UwNCl5TMKCXyZpmltzNGGJuFjAkhkxM0pjLkQURjOkJjwrgICOHkDE2c2xBCo5jJMXpP8TPsrHHeHAAv9mZr6jV-gdaqqgt_bOwWZ8bq1nh8NP4DL6ACPdDtHuzBOChw6j3U3jQ1Tqt1Yztud45OS1U5uPjJKXq7v1tmj8H89eEpS-eBZjL0AY8TJYApzUJBSbEKNee6G0gppZaKFZwBYStFtS6oKHlUJCwBCrpIOIkUC6foeti7t81nC87nm6a1dXcyZyKUMZVE9hQfKG0b5yyUuTZe9R97q0yVU5L3PeZ9j3nfY_7TY2fSP-bemp2yX_86V4NjAOCXl1JEUojwGxv2gM0 |
| CODEN | ITCSDI |
| CitedBy_id | crossref_primary_10_1109_TIE_2023_3325558 crossref_primary_10_1007_s11071_023_09128_9 crossref_primary_10_1088_1674_1056_aceee9 crossref_primary_10_1016_j_cjph_2023_12_011 crossref_primary_10_1016_j_chaos_2023_114387 crossref_primary_10_1109_TCAD_2024_3434478 crossref_primary_10_1016_j_physleta_2024_129607 crossref_primary_10_3389_fphy_2023_1202398 crossref_primary_10_1007_s11071_025_11728_6 crossref_primary_10_1016_j_chaos_2024_115473 crossref_primary_10_1140_epjs_s11734_024_01173_8 crossref_primary_10_1007_s11071_025_10949_z crossref_primary_10_1016_j_cjph_2023_11_001 crossref_primary_10_1088_1402_4896_ad156e crossref_primary_10_1109_TII_2023_3341256 crossref_primary_10_3389_fphy_2023_1252568 crossref_primary_10_3390_biomimetics8080559 crossref_primary_10_1007_s11071_024_09614_8 crossref_primary_10_1088_1674_1056_acb9f7 crossref_primary_10_3390_electronics13112138 crossref_primary_10_1109_TCSII_2024_3373017 crossref_primary_10_1109_TIE_2024_3429616 crossref_primary_10_1016_j_neucom_2025_131525 crossref_primary_10_1109_JIOT_2023_3331422 crossref_primary_10_1109_TCSI_2024_3415414 crossref_primary_10_1016_j_chaos_2024_114917 crossref_primary_10_1140_epjp_s13360_024_04984_9 crossref_primary_10_3390_math11030701 crossref_primary_10_3390_math11030767 crossref_primary_10_3389_fphy_2024_1396178 crossref_primary_10_1016_j_vlsi_2023_102129 crossref_primary_10_1007_s11071_023_08562_z crossref_primary_10_3389_fphy_2023_1180413 crossref_primary_10_1016_j_chaos_2024_115150 crossref_primary_10_1002_aelm_202400421 crossref_primary_10_1140_epjs_s11734_024_01160_z crossref_primary_10_1088_1674_1056_ad1483 crossref_primary_10_1109_TII_2024_3363211 crossref_primary_10_1016_j_eswa_2023_122513 crossref_primary_10_1109_TCAD_2024_3437345 crossref_primary_10_1016_j_cjph_2024_08_023 crossref_primary_10_1109_TCSII_2024_3393731 |
| Cites_doi | 10.1109/ICCAD.2017.8203823 10.1016/j.neucom.2021.08.072 10.1016/j.tics.2011.11.014 10.1109/TCAD.2020.3002568 10.1109/TCSII.2020.3000492 10.1109/TCAD.2021.3061481 10.1038/nature06932 10.3389/fnins.2021.773954 10.1016/j.neunet.2019.09.036 10.1038/s41467-020-17215-3 10.3389/fnins.2019.00095 10.1177/1073858413514136 10.1109/TCT.1971.1083337 10.1038/s41699-019-0114-6 10.1162/NECO_a_00450 10.1016/S0925-2312(02)00838-X 10.3390/bdcc5040067 10.1109/TCAD.2021.3116463 10.1109/TCSI.2021.3081150 10.1109/TII.2022.3155599 10.1016/j.neunet.2021.09.022 10.1109/IJCNN52387.2021.9534306 10.1109/TCAD.2013.2252057 10.1109/TCAD.2016.2618866 10.1037/a0033753 10.1109/TBCAS.2014.2318012 10.1109/TCSII.2022.3212394 10.1109/TBCAS.2018.2831618 10.3390/ma13040938 10.1109/TCAD.2021.3121347 10.1109/TNNLS.2015.2399491 10.1109/TCAD.2022.3186516 10.1109/TNNLS.2021.3111897 10.23919/DATE54114.2022.9774704 10.1109/TCSI.2012.2215714 10.1109/TCSII.2020.2980054 10.1109/TCSII.2016.2605069 10.1109/MSP.2012.2211477 10.1038/s41598-021-98448-0 10.1007/s11071-022-07813-9 10.1109/TCSII.2015.2433536 10.1109/TCSI.2021.3136355 10.1109/TCAD.2017.2648844 10.1145/3531437.3539729 10.1145/3061639.3062311 10.1016/j.neunet.2020.02.011 10.1109/TCAD.2021.3109857 10.3389/fnins.2022.815258 10.1162/neco.2009.11-08-901 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TCAD.2022.3228896 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1937-4151 |
| EndPage | 1 |
| ExternalDocumentID | 10_1109_TCAD_2022_3228896 9984988 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: China Postdoctoral Science Foundation grantid: 2022M71104 funderid: 10.13039/501100002858 – fundername: National Natural Science Foundation of China grantid: 61971185; 62201204; 62271197 funderid: 10.13039/501100001809 |
| GroupedDBID | --Z -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK ACNCT AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P PZZ RIA RIE RNS TN5 5VS AAYXX AETIX AGSQL AI. AIBXA ALLEH CITATION EJD H~9 IBMZZ ICLAB IFJZH VH1 VJK 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c293t-756a8e2ac23810db3c77cc230f99c9a2d72e02ba1ccd18f74d626e1ecd6704a23 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 59 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001033520500014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0278-0070 |
| IngestDate | Mon Jun 30 10:27:23 EDT 2025 Sat Nov 29 03:31:51 EST 2025 Tue Nov 18 22:35:33 EST 2025 Wed Aug 27 02:29:15 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-756a8e2ac23810db3c77cc230f99c9a2d72e02ba1ccd18f74d626e1ecd6704a23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3506-9780 0000-0001-6522-9795 0000-0001-8352-2119 |
| PQID | 2839519092 |
| PQPubID | 85470 |
| PageCount | 1 |
| ParticipantIDs | crossref_citationtrail_10_1109_TCAD_2022_3228896 crossref_primary_10_1109_TCAD_2022_3228896 proquest_journals_2839519092 ieee_primary_9984988 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-08-01 |
| PublicationDateYYYYMMDD | 2023-08-01 |
| PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on computer-aided design of integrated circuits and systems |
| PublicationTitleAbbrev | TCAD |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref56 ref15 ref14 ref53 ref52 ref11 ref55 ref10 ref17 ref16 ref19 ref18 Huynh (ref7) 2022 ref51 ref50 ref46 ref47 ref42 ref41 ref44 ref43 Zhou (ref38) 2022 ref49 ref8 ref9 ref4 ref3 ref6 Biolek (ref48) 2009; 18 ref5 Xiao (ref54) 2017 Aarthi (ref40) ref35 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 Lin (ref34) 2016; 44 ref24 ref23 ref26 Rathi (ref45) 2020 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
| References_xml | – ident: ref17 doi: 10.1109/ICCAD.2017.8203823 – ident: ref21 doi: 10.1016/j.neucom.2021.08.072 – ident: ref41 doi: 10.1016/j.tics.2011.11.014 – ident: ref23 doi: 10.1109/TCAD.2020.3002568 – ident: ref15 doi: 10.1109/TCSII.2020.3000492 – ident: ref26 doi: 10.1109/TCAD.2021.3061481 – volume-title: arXiv:2203.01426 year: 2022 ident: ref38 article-title: Spiceprop: Backpropagating errors through memristive spiking neural networks – ident: ref11 doi: 10.1038/nature06932 – volume: 18 start-page: 210 issue: 2 year: 2009 ident: ref48 article-title: SPICE model of memristor with nonlinear dopant drift publication-title: Radioengineering – ident: ref3 doi: 10.3389/fnins.2021.773954 – ident: ref1 doi: 10.1016/j.neunet.2019.09.036 – ident: ref37 doi: 10.1038/s41467-020-17215-3 – ident: ref51 doi: 10.3389/fnins.2019.00095 – ident: ref39 doi: 10.1177/1073858413514136 – volume-title: arXiv:2202.08897 year: 2022 ident: ref7 article-title: Implementing spiking neural networks on neuromorphic architectures: A review – ident: ref9 doi: 10.1109/TCT.1971.1083337 – ident: ref36 doi: 10.1038/s41699-019-0114-6 – ident: ref33 doi: 10.1162/NECO_a_00450 – ident: ref44 doi: 10.1016/S0925-2312(02)00838-X – ident: ref2 doi: 10.3390/bdcc5040067 – ident: ref19 doi: 10.1109/TCAD.2021.3116463 – ident: ref20 doi: 10.1109/TCSI.2021.3081150 – ident: ref25 doi: 10.1109/TII.2022.3155599 – ident: ref4 doi: 10.1016/j.neunet.2021.09.022 – ident: ref52 doi: 10.1109/IJCNN52387.2021.9534306 – ident: ref12 doi: 10.1109/TCAD.2013.2252057 – ident: ref27 doi: 10.1109/TCAD.2016.2618866 – ident: ref43 doi: 10.1037/a0033753 – ident: ref10 doi: 10.1109/TBCAS.2014.2318012 – ident: ref24 doi: 10.1109/TCSII.2022.3212394 – ident: ref29 doi: 10.1109/TBCAS.2018.2831618 – start-page: 278 volume-title: Proc. 4th Int. Conf. Trends Electron. Informat. (ICOEI) ident: ref40 article-title: Study on computational visual attention system and its contribution to robotic cognition system – ident: ref8 doi: 10.3390/ma13040938 – ident: ref22 doi: 10.1109/TCAD.2021.3121347 – ident: ref35 doi: 10.1109/TNNLS.2015.2399491 – ident: ref18 doi: 10.1109/TCAD.2022.3186516 – ident: ref46 doi: 10.1109/TNNLS.2021.3111897 – ident: ref47 doi: 10.23919/DATE54114.2022.9774704 – ident: ref49 doi: 10.1109/TCSI.2012.2215714 – ident: ref30 doi: 10.1109/TCSII.2020.2980054 – volume-title: arXiv:2005.01807 year: 2020 ident: ref45 article-title: Enabling deep spiking neural networks with hybrid conversion and spike timing dependent backpropagation – ident: ref14 doi: 10.1109/TCSII.2016.2605069 – ident: ref53 doi: 10.1109/MSP.2012.2211477 – ident: ref6 doi: 10.1038/s41598-021-98448-0 – ident: ref16 doi: 10.1007/s11071-022-07813-9 – ident: ref50 doi: 10.1109/TCSII.2015.2433536 – ident: ref42 doi: 10.1109/TCSI.2021.3136355 – volume: 44 start-page: 2877 issue: 12 year: 2016 ident: ref34 article-title: A new supervised learning algorithm for spiking neurons based on spike train kernels publication-title: Acta Electronica Sinica – ident: ref13 doi: 10.1109/TCAD.2017.2648844 – ident: ref55 doi: 10.1145/3531437.3539729 – volume-title: arXiv:1708.07747 year: 2017 ident: ref54 article-title: Fashion-MNIST: A novel image dataset for benchmarking machine learning algorithms – ident: ref28 doi: 10.1145/3061639.3062311 – ident: ref31 doi: 10.1016/j.neunet.2020.02.011 – ident: ref56 doi: 10.1109/TCAD.2021.3109857 – ident: ref5 doi: 10.3389/fnins.2022.815258 – ident: ref32 doi: 10.1162/neco.2009.11-08-901 |
| SSID | ssj0014529 |
| Score | 2.589979 |
| Snippet | Spiking neural networks (SNNs) are biologically plausible and computationally powerful. The current computing systems based on the von Neumann architecture are... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Annotations Biological neural networks Circuit design Coding Datasets Encoding Energy consumption Hardware image classification Machine learning memristor Memristors Neural networks Neurons Selective attention sequence learning Spiking spiking neural network supervised algorithm Supervised learning Synapses |
| Title | A Memristive Spiking Neural Network Circuit with Selective Supervised Attention Algorithm |
| URI | https://ieeexplore.ieee.org/document/9984988 https://www.proquest.com/docview/2839519092 |
| Volume | 42 |
| WOSCitedRecordID | wos001033520500014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1937-4151 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014529 issn: 0278-0070 databaseCode: RIE dateStart: 19820101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED-24YM--DXF6ZQ8-CR2S9OuaR7HcPjiEDZhPpU0SWWwL7Zuf7-XtBsDRfCtKRdo7y653Ed-B_DI0cZKzqUnsyj10OIbLw38wMsCrTMZxn4oU9dsgg8G8Xgs3ivwvL8LY4xxxWemZR9dLl8v1MaGytroGoQijqtQ5Twq7mrtMwY2gejiKRYxFvW4zGD6VLRH-FPoCTLWQu2NY4vPf2CDXFOVHzuxMy_9s_992DmclsdI0i3kfgEVM7-EkwNwwTp8dsmbmbk1vDVkuJzYoDixYBw4cVBUf5PeZKU2k5zYcCwZup44jnqztHvI2mjSzfOiIpJ0p1-LFdLNruCj_zLqvXplIwVPoTXPPd6JZGyYVNY-U50GinOFA5oJoYRkmjNDWSp9pbQfZzzU6OYY3ygdcRpKFlxDbb6YmxsgHZ1yi_mmfG1QklqiCih8wWiGm4NkDaA71iaqRBm3zS6mifM2qEisNBIrjaSURgOe9lOWBcTGX8R1y_49Ycn5BjR38kvKRbhO8OSE50dBBbv9fdYdHNvu8UU9XxNq-Wpj7uFIbfPJevXg9OsbpSrOZA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_mB6gPfk1xfubBJ7FbmnZL8zjEMXEbwiboU0mTVAZzG1vr3-8lrUNQBN-acoH27pLLfeR3ANccbazkXHoybSUeWnzjJYEfeGmgdSrDyA9l4ppN8MEgenkRTxW4Xd2FMca44jNTt48ul69nKrehsga6BqGIojXYaIYho8VtrVXOwKYQXUTFYsaiJpc5TJ-Kxgh_C31Bxuqov1FkEfq_WSHXVuXHXuwMTGfvf5-2D7vlQZK0C8kfQMVMD2HnG7xgFV7bpG_e3Sr-MGQ4H9uwOLFwHDhxUNR_k7vxQuXjjNiALBm6rjiOOp_bXWRpNGlnWVETSdqTt9kC6d6P4LlzP7rremUrBU-hPc883mzJyDCprIWmOgkU5woHNBVCCck0Z4ayRPpKaT9KeajR0TG-UbrFaShZcAzr09nUnABp6oRb1Dfla4Oy1BKVQOELRlPcHiSrAf1ibaxKnHHb7mISO3-DithKI7bSiEtp1OBmNWVegGz8RVy17F8RlpyvwfmX_OJyGS5jPDvhCVJQwU5_n3UFW91Rvxf3HgaPZ7Bte8kX1X3nsJ4tcnMBm-ojGy8Xl07XPgGKWdGr |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Memristive+Spiking+Neural+Network+Circuit+With+Selective+Supervised+Attention+Algorithm&rft.jtitle=IEEE+transactions+on+computer-aided+design+of+integrated+circuits+and+systems&rft.au=Deng%2C+Zekun&rft.au=Wang%2C+Chunhua&rft.au=Lin%2C+Hairong&rft.au=Sun%2C+Yichuang&rft.date=2023-08-01&rft.issn=0278-0070&rft.eissn=1937-4151&rft.volume=42&rft.issue=8&rft.spage=2604&rft.epage=2617&rft_id=info:doi/10.1109%2FTCAD.2022.3228896&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCAD_2022_3228896 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0070&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0070&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0070&client=summon |