A Memristive Spiking Neural Network Circuit with Selective Supervised Attention Algorithm

Spiking neural networks (SNNs) are biologically plausible and computationally powerful. The current computing systems based on the von Neumann architecture are almost the hardware basis for the implementation of SNNs. However, performance bottlenecks in computing speed, cost, and energy consumption...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on computer-aided design of integrated circuits and systems Ročník 42; číslo 8; s. 1
Hlavní autoři: Deng, Zekun, Wang, Chunhua, Lin, Hairong, Sun, Yichuang
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.08.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0278-0070, 1937-4151
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Spiking neural networks (SNNs) are biologically plausible and computationally powerful. The current computing systems based on the von Neumann architecture are almost the hardware basis for the implementation of SNNs. However, performance bottlenecks in computing speed, cost, and energy consumption hinder the hardware development of SNNs. Therefore, efficient non-Neumann hardware computing systems for SNNs remain to be explored. In this paper, a selective supervised algorithm for spiking neurons inspired by the selective attention mechanism is proposed, and a memristive spiking neuron circuit as well as a memristive SNN circuit based on the proposed algorithm are designed. The memristor realizes the learning and memory of the synaptic weight. The proposed algorithm includes a top-down selective supervision method and a bottom-up selective supervision method. Compared with other supervised algorithms, the proposed algorithm has excellent performance on sequence learning. Moreover, top-down and bottom-up attention encoding circuits are designed to provide the hardware foundation for encoding external stimuli into top-down and bottom-up attention spikes, respectively. The proposed memristive SNN circuit can perform classification on the MNIST dataset and the Fashion-MNIST dataset with superior accuracy after learning a small number of labeled samples, which greatly reduces the cost of manual annotation and improves the supervised learning efficiency of the memristive SNN circuit.
AbstractList Spiking neural networks (SNNs) are biologically plausible and computationally powerful. The current computing systems based on the von Neumann architecture are almost the hardware basis for the implementation of SNNs. However, performance bottlenecks in computing speed, cost, and energy consumption hinder the hardware development of SNNs. Therefore, efficient non von Neumann hardware computing systems for SNNs remain to be explored. In this article, a selective supervised algorithm for spiking neurons (SNs) inspired by the selective attention mechanism is proposed, and a memristive SN circuit as well as a memristive SNN circuit based on the proposed algorithm are designed. The memristor realizes the learning and memory of the synaptic weight. The proposed algorithm includes a top-down (TD) selective supervision method and a bottom-up (BU) selective supervision method. Compared with other supervised algorithms, the proposed algorithm has excellent performance on sequence learning. Moreover, TD and BU attention encoding circuits are designed to provide the hardware foundation for encoding external stimuli into TD and BU attention spikes, respectively. The proposed memristive SNN circuit can perform classification on the MNIST dataset and the Fashion-MNIST dataset with superior accuracy after learning a small number of labeled samples, which greatly reduces the cost of manual annotation and improves the supervised learning efficiency of the memristive SNN circuit.
Spiking neural networks (SNNs) are biologically plausible and computationally powerful. The current computing systems based on the von Neumann architecture are almost the hardware basis for the implementation of SNNs. However, performance bottlenecks in computing speed, cost, and energy consumption hinder the hardware development of SNNs. Therefore, efficient non-Neumann hardware computing systems for SNNs remain to be explored. In this paper, a selective supervised algorithm for spiking neurons inspired by the selective attention mechanism is proposed, and a memristive spiking neuron circuit as well as a memristive SNN circuit based on the proposed algorithm are designed. The memristor realizes the learning and memory of the synaptic weight. The proposed algorithm includes a top-down selective supervision method and a bottom-up selective supervision method. Compared with other supervised algorithms, the proposed algorithm has excellent performance on sequence learning. Moreover, top-down and bottom-up attention encoding circuits are designed to provide the hardware foundation for encoding external stimuli into top-down and bottom-up attention spikes, respectively. The proposed memristive SNN circuit can perform classification on the MNIST dataset and the Fashion-MNIST dataset with superior accuracy after learning a small number of labeled samples, which greatly reduces the cost of manual annotation and improves the supervised learning efficiency of the memristive SNN circuit.
Author Deng, Zekun
Wang, Chunhua
Lin, Hairong
Sun, Yichuang
Author_xml – sequence: 1
  givenname: Zekun
  surname: Deng
  fullname: Deng, Zekun
  organization: College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
– sequence: 2
  givenname: Chunhua
  orcidid: 0000-0001-6522-9795
  surname: Wang
  fullname: Wang, Chunhua
  organization: College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
– sequence: 3
  givenname: Hairong
  orcidid: 0000-0003-3506-9780
  surname: Lin
  fullname: Lin, Hairong
  organization: College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
– sequence: 4
  givenname: Yichuang
  orcidid: 0000-0001-8352-2119
  surname: Sun
  fullname: Sun, Yichuang
  organization: School of Engineering and Computer Science, University of Hertfordshire, Hatfield, U.K
BookMark eNp9kD1PwzAQhi1UJNrCD0AslphTbOfD9hiFT6nA0DIwRa5zKW7TpNhOK_49iYIYGJhenfQ8d6d3gkZ1UwNCl5TMKCXyZpmltzNGGJuFjAkhkxM0pjLkQURjOkJjwrgICOHkDE2c2xBCo5jJMXpP8TPsrHHeHAAv9mZr6jV-gdaqqgt_bOwWZ8bq1nh8NP4DL6ACPdDtHuzBOChw6j3U3jQ1Tqt1Yztud45OS1U5uPjJKXq7v1tmj8H89eEpS-eBZjL0AY8TJYApzUJBSbEKNee6G0gppZaKFZwBYStFtS6oKHlUJCwBCrpIOIkUC6foeti7t81nC87nm6a1dXcyZyKUMZVE9hQfKG0b5yyUuTZe9R97q0yVU5L3PeZ9j3nfY_7TY2fSP-bemp2yX_86V4NjAOCXl1JEUojwGxv2gM0
CODEN ITCSDI
CitedBy_id crossref_primary_10_1109_TIE_2023_3325558
crossref_primary_10_1007_s11071_023_09128_9
crossref_primary_10_1088_1674_1056_aceee9
crossref_primary_10_1016_j_cjph_2023_12_011
crossref_primary_10_1016_j_chaos_2023_114387
crossref_primary_10_1109_TCAD_2024_3434478
crossref_primary_10_1016_j_physleta_2024_129607
crossref_primary_10_3389_fphy_2023_1202398
crossref_primary_10_1007_s11071_025_11728_6
crossref_primary_10_1016_j_chaos_2024_115473
crossref_primary_10_1140_epjs_s11734_024_01173_8
crossref_primary_10_1007_s11071_025_10949_z
crossref_primary_10_1016_j_cjph_2023_11_001
crossref_primary_10_1088_1402_4896_ad156e
crossref_primary_10_1109_TII_2023_3341256
crossref_primary_10_3389_fphy_2023_1252568
crossref_primary_10_3390_biomimetics8080559
crossref_primary_10_1007_s11071_024_09614_8
crossref_primary_10_1088_1674_1056_acb9f7
crossref_primary_10_3390_electronics13112138
crossref_primary_10_1109_TCSII_2024_3373017
crossref_primary_10_1109_TIE_2024_3429616
crossref_primary_10_1016_j_neucom_2025_131525
crossref_primary_10_1109_JIOT_2023_3331422
crossref_primary_10_1109_TCSI_2024_3415414
crossref_primary_10_1016_j_chaos_2024_114917
crossref_primary_10_1140_epjp_s13360_024_04984_9
crossref_primary_10_3390_math11030701
crossref_primary_10_3390_math11030767
crossref_primary_10_3389_fphy_2024_1396178
crossref_primary_10_1016_j_vlsi_2023_102129
crossref_primary_10_1007_s11071_023_08562_z
crossref_primary_10_3389_fphy_2023_1180413
crossref_primary_10_1016_j_chaos_2024_115150
crossref_primary_10_1002_aelm_202400421
crossref_primary_10_1140_epjs_s11734_024_01160_z
crossref_primary_10_1088_1674_1056_ad1483
crossref_primary_10_1109_TII_2024_3363211
crossref_primary_10_1016_j_eswa_2023_122513
crossref_primary_10_1109_TCAD_2024_3437345
crossref_primary_10_1016_j_cjph_2024_08_023
crossref_primary_10_1109_TCSII_2024_3393731
Cites_doi 10.1109/ICCAD.2017.8203823
10.1016/j.neucom.2021.08.072
10.1016/j.tics.2011.11.014
10.1109/TCAD.2020.3002568
10.1109/TCSII.2020.3000492
10.1109/TCAD.2021.3061481
10.1038/nature06932
10.3389/fnins.2021.773954
10.1016/j.neunet.2019.09.036
10.1038/s41467-020-17215-3
10.3389/fnins.2019.00095
10.1177/1073858413514136
10.1109/TCT.1971.1083337
10.1038/s41699-019-0114-6
10.1162/NECO_a_00450
10.1016/S0925-2312(02)00838-X
10.3390/bdcc5040067
10.1109/TCAD.2021.3116463
10.1109/TCSI.2021.3081150
10.1109/TII.2022.3155599
10.1016/j.neunet.2021.09.022
10.1109/IJCNN52387.2021.9534306
10.1109/TCAD.2013.2252057
10.1109/TCAD.2016.2618866
10.1037/a0033753
10.1109/TBCAS.2014.2318012
10.1109/TCSII.2022.3212394
10.1109/TBCAS.2018.2831618
10.3390/ma13040938
10.1109/TCAD.2021.3121347
10.1109/TNNLS.2015.2399491
10.1109/TCAD.2022.3186516
10.1109/TNNLS.2021.3111897
10.23919/DATE54114.2022.9774704
10.1109/TCSI.2012.2215714
10.1109/TCSII.2020.2980054
10.1109/TCSII.2016.2605069
10.1109/MSP.2012.2211477
10.1038/s41598-021-98448-0
10.1007/s11071-022-07813-9
10.1109/TCSII.2015.2433536
10.1109/TCSI.2021.3136355
10.1109/TCAD.2017.2648844
10.1145/3531437.3539729
10.1145/3061639.3062311
10.1016/j.neunet.2020.02.011
10.1109/TCAD.2021.3109857
10.3389/fnins.2022.815258
10.1162/neco.2009.11-08-901
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCAD.2022.3228896
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1937-4151
EndPage 1
ExternalDocumentID 10_1109_TCAD_2022_3228896
9984988
Genre orig-research
GrantInformation_xml – fundername: China Postdoctoral Science Foundation
  grantid: 2022M71104
  funderid: 10.13039/501100002858
– fundername: National Natural Science Foundation of China
  grantid: 61971185; 62201204; 62271197
  funderid: 10.13039/501100001809
GroupedDBID --Z
-~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PZZ
RIA
RIE
RNS
TN5
5VS
AAYXX
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
EJD
H~9
IBMZZ
ICLAB
IFJZH
VH1
VJK
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-756a8e2ac23810db3c77cc230f99c9a2d72e02ba1ccd18f74d626e1ecd6704a23
IEDL.DBID RIE
ISICitedReferencesCount 59
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001033520500014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0278-0070
IngestDate Mon Jun 30 10:27:23 EDT 2025
Sat Nov 29 03:31:51 EST 2025
Tue Nov 18 22:35:33 EST 2025
Wed Aug 27 02:29:15 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-756a8e2ac23810db3c77cc230f99c9a2d72e02ba1ccd18f74d626e1ecd6704a23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3506-9780
0000-0001-6522-9795
0000-0001-8352-2119
PQID 2839519092
PQPubID 85470
PageCount 1
ParticipantIDs crossref_citationtrail_10_1109_TCAD_2022_3228896
crossref_primary_10_1109_TCAD_2022_3228896
proquest_journals_2839519092
ieee_primary_9984988
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on computer-aided design of integrated circuits and systems
PublicationTitleAbbrev TCAD
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref56
ref15
ref14
ref53
ref52
ref11
ref55
ref10
ref17
ref16
ref19
ref18
Huynh (ref7) 2022
ref51
ref50
ref46
ref47
ref42
ref41
ref44
ref43
Zhou (ref38) 2022
ref49
ref8
ref9
ref4
ref3
ref6
Biolek (ref48) 2009; 18
ref5
Xiao (ref54) 2017
Aarthi (ref40)
ref35
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
Lin (ref34) 2016; 44
ref24
ref23
ref26
Rathi (ref45) 2020
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref17
  doi: 10.1109/ICCAD.2017.8203823
– ident: ref21
  doi: 10.1016/j.neucom.2021.08.072
– ident: ref41
  doi: 10.1016/j.tics.2011.11.014
– ident: ref23
  doi: 10.1109/TCAD.2020.3002568
– ident: ref15
  doi: 10.1109/TCSII.2020.3000492
– ident: ref26
  doi: 10.1109/TCAD.2021.3061481
– volume-title: arXiv:2203.01426
  year: 2022
  ident: ref38
  article-title: Spiceprop: Backpropagating errors through memristive spiking neural networks
– ident: ref11
  doi: 10.1038/nature06932
– volume: 18
  start-page: 210
  issue: 2
  year: 2009
  ident: ref48
  article-title: SPICE model of memristor with nonlinear dopant drift
  publication-title: Radioengineering
– ident: ref3
  doi: 10.3389/fnins.2021.773954
– ident: ref1
  doi: 10.1016/j.neunet.2019.09.036
– ident: ref37
  doi: 10.1038/s41467-020-17215-3
– ident: ref51
  doi: 10.3389/fnins.2019.00095
– ident: ref39
  doi: 10.1177/1073858413514136
– volume-title: arXiv:2202.08897
  year: 2022
  ident: ref7
  article-title: Implementing spiking neural networks on neuromorphic architectures: A review
– ident: ref9
  doi: 10.1109/TCT.1971.1083337
– ident: ref36
  doi: 10.1038/s41699-019-0114-6
– ident: ref33
  doi: 10.1162/NECO_a_00450
– ident: ref44
  doi: 10.1016/S0925-2312(02)00838-X
– ident: ref2
  doi: 10.3390/bdcc5040067
– ident: ref19
  doi: 10.1109/TCAD.2021.3116463
– ident: ref20
  doi: 10.1109/TCSI.2021.3081150
– ident: ref25
  doi: 10.1109/TII.2022.3155599
– ident: ref4
  doi: 10.1016/j.neunet.2021.09.022
– ident: ref52
  doi: 10.1109/IJCNN52387.2021.9534306
– ident: ref12
  doi: 10.1109/TCAD.2013.2252057
– ident: ref27
  doi: 10.1109/TCAD.2016.2618866
– ident: ref43
  doi: 10.1037/a0033753
– ident: ref10
  doi: 10.1109/TBCAS.2014.2318012
– ident: ref24
  doi: 10.1109/TCSII.2022.3212394
– ident: ref29
  doi: 10.1109/TBCAS.2018.2831618
– start-page: 278
  volume-title: Proc. 4th Int. Conf. Trends Electron. Informat. (ICOEI)
  ident: ref40
  article-title: Study on computational visual attention system and its contribution to robotic cognition system
– ident: ref8
  doi: 10.3390/ma13040938
– ident: ref22
  doi: 10.1109/TCAD.2021.3121347
– ident: ref35
  doi: 10.1109/TNNLS.2015.2399491
– ident: ref18
  doi: 10.1109/TCAD.2022.3186516
– ident: ref46
  doi: 10.1109/TNNLS.2021.3111897
– ident: ref47
  doi: 10.23919/DATE54114.2022.9774704
– ident: ref49
  doi: 10.1109/TCSI.2012.2215714
– ident: ref30
  doi: 10.1109/TCSII.2020.2980054
– volume-title: arXiv:2005.01807
  year: 2020
  ident: ref45
  article-title: Enabling deep spiking neural networks with hybrid conversion and spike timing dependent backpropagation
– ident: ref14
  doi: 10.1109/TCSII.2016.2605069
– ident: ref53
  doi: 10.1109/MSP.2012.2211477
– ident: ref6
  doi: 10.1038/s41598-021-98448-0
– ident: ref16
  doi: 10.1007/s11071-022-07813-9
– ident: ref50
  doi: 10.1109/TCSII.2015.2433536
– ident: ref42
  doi: 10.1109/TCSI.2021.3136355
– volume: 44
  start-page: 2877
  issue: 12
  year: 2016
  ident: ref34
  article-title: A new supervised learning algorithm for spiking neurons based on spike train kernels
  publication-title: Acta Electronica Sinica
– ident: ref13
  doi: 10.1109/TCAD.2017.2648844
– ident: ref55
  doi: 10.1145/3531437.3539729
– volume-title: arXiv:1708.07747
  year: 2017
  ident: ref54
  article-title: Fashion-MNIST: A novel image dataset for benchmarking machine learning algorithms
– ident: ref28
  doi: 10.1145/3061639.3062311
– ident: ref31
  doi: 10.1016/j.neunet.2020.02.011
– ident: ref56
  doi: 10.1109/TCAD.2021.3109857
– ident: ref5
  doi: 10.3389/fnins.2022.815258
– ident: ref32
  doi: 10.1162/neco.2009.11-08-901
SSID ssj0014529
Score 2.589979
Snippet Spiking neural networks (SNNs) are biologically plausible and computationally powerful. The current computing systems based on the von Neumann architecture are...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Annotations
Biological neural networks
Circuit design
Coding
Datasets
Encoding
Energy consumption
Hardware
image classification
Machine learning
memristor
Memristors
Neural networks
Neurons
Selective attention
sequence learning
Spiking
spiking neural network
supervised algorithm
Supervised learning
Synapses
Title A Memristive Spiking Neural Network Circuit with Selective Supervised Attention Algorithm
URI https://ieeexplore.ieee.org/document/9984988
https://www.proquest.com/docview/2839519092
Volume 42
WOSCitedRecordID wos001033520500014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1937-4151
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014529
  issn: 0278-0070
  databaseCode: RIE
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED-24YM--DXF6ZQ8-CR2S9OuaR7HcPjiEDZhPpU0SWWwL7Zuf7-XtBsDRfCtKRdo7y653Ed-B_DI0cZKzqUnsyj10OIbLw38wMsCrTMZxn4oU9dsgg8G8Xgs3ivwvL8LY4xxxWemZR9dLl8v1MaGytroGoQijqtQ5Twq7mrtMwY2gejiKRYxFvW4zGD6VLRH-FPoCTLWQu2NY4vPf2CDXFOVHzuxMy_9s_992DmclsdI0i3kfgEVM7-EkwNwwTp8dsmbmbk1vDVkuJzYoDixYBw4cVBUf5PeZKU2k5zYcCwZup44jnqztHvI2mjSzfOiIpJ0p1-LFdLNruCj_zLqvXplIwVPoTXPPd6JZGyYVNY-U50GinOFA5oJoYRkmjNDWSp9pbQfZzzU6OYY3ygdcRpKFlxDbb6YmxsgHZ1yi_mmfG1QklqiCih8wWiGm4NkDaA71iaqRBm3zS6mifM2qEisNBIrjaSURgOe9lOWBcTGX8R1y_49Ycn5BjR38kvKRbhO8OSE50dBBbv9fdYdHNvu8UU9XxNq-Wpj7uFIbfPJevXg9OsbpSrOZA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_mB6gPfk1xfubBJ7FbmnZL8zjEMXEbwiboU0mTVAZzG1vr3-8lrUNQBN-acoH27pLLfeR3ANccbazkXHoybSUeWnzjJYEfeGmgdSrDyA9l4ppN8MEgenkRTxW4Xd2FMca44jNTt48ul69nKrehsga6BqGIojXYaIYho8VtrVXOwKYQXUTFYsaiJpc5TJ-Kxgh_C31Bxuqov1FkEfq_WSHXVuXHXuwMTGfvf5-2D7vlQZK0C8kfQMVMD2HnG7xgFV7bpG_e3Sr-MGQ4H9uwOLFwHDhxUNR_k7vxQuXjjNiALBm6rjiOOp_bXWRpNGlnWVETSdqTt9kC6d6P4LlzP7rremUrBU-hPc883mzJyDCprIWmOgkU5woHNBVCCck0Z4ayRPpKaT9KeajR0TG-UbrFaShZcAzr09nUnABp6oRb1Dfla4Oy1BKVQOELRlPcHiSrAf1ibaxKnHHb7mISO3-DithKI7bSiEtp1OBmNWVegGz8RVy17F8RlpyvwfmX_OJyGS5jPDvhCVJQwU5_n3UFW91Rvxf3HgaPZ7Bte8kX1X3nsJ4tcnMBm-ojGy8Xl07XPgGKWdGr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Memristive+Spiking+Neural+Network+Circuit+With+Selective+Supervised+Attention+Algorithm&rft.jtitle=IEEE+transactions+on+computer-aided+design+of+integrated+circuits+and+systems&rft.au=Deng%2C+Zekun&rft.au=Wang%2C+Chunhua&rft.au=Lin%2C+Hairong&rft.au=Sun%2C+Yichuang&rft.date=2023-08-01&rft.issn=0278-0070&rft.eissn=1937-4151&rft.volume=42&rft.issue=8&rft.spage=2604&rft.epage=2617&rft_id=info:doi/10.1109%2FTCAD.2022.3228896&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCAD_2022_3228896
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0070&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0070&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0070&client=summon