Efficient Scheduling Algorithms for Multiantenna CDMA Systems

In multiple-input-multiple-output (MIMO) multiuser systems, simultaneously serving multiple users achieves high data rates. However, high-performance transmit beamforming requires an adequately designed user-selection scheme. Optimal scheduling can be only obtained through a high computationally com...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on vehicular technology Vol. 61; no. 2; pp. 521 - 532
Main Authors: Driouch, E., Ajib, W.
Format: Journal Article
Language:English
Published: New York, NY IEEE 01.02.2012
Institute of Electrical and Electronics Engineers
Subjects:
ISSN:0018-9545, 1939-9359
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In multiple-input-multiple-output (MIMO) multiuser systems, simultaneously serving multiple users achieves high data rates. However, high-performance transmit beamforming requires an adequately designed user-selection scheme. Optimal scheduling can be only obtained through a high computationally complex exhaustive search, and hence, low-complexity heuristic algorithms are required. In addition, employing a multiple-access scheme such as code division (CDMA) largely increases the complexity of optimal scheduling, and it becomes unemployable even for a moderate number of users and antennas. In this context, this paper proposes three heuristic scheduling algorithms for MIMO CDMA systems using zero-forcing beamforming (ZFBF). We use a graph-theoretical approach to model the system as a weighted undirected graph. The problem of user selection is then formulated as a graph coloring problem, namely, the maximum weight N -colorable subgraph problem. Then, we design two heuristics to solve this graph problem. The first algorithm is a low-complexity greedy algorithm. The second algorithm is based on a tabu search approach to resolve efficiently the complexity/performance tradeoff. Numerical and simulation results show the sub-optimal performances and robustness of the proposed low-complexity algorithms.
ISSN:0018-9545
1939-9359
DOI:10.1109/TVT.2011.2178622