Design and Research of an Intelligent Detection Method for Coal Mine Fire Edges
Mine fire is caused by external heat source or coal seam spontaneous combustion, and there are serious hidden dangers in mining operation. The existing detection methods have high cost, limited coverage and delayed response. An edge intelligent fire detection system based on multi-source information...
Gespeichert in:
| Veröffentlicht in: | Applied sciences Jg. 15; H. 19; S. 10589 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Basel
MDPI AG
30.09.2025
|
| Schlagworte: | |
| ISSN: | 2076-3417, 2076-3417 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Mine fire is caused by external heat source or coal seam spontaneous combustion, and there are serious hidden dangers in mining operation. The existing detection methods have high cost, limited coverage and delayed response. An edge intelligent fire detection system based on multi-source information fusion is proposed. We enhance the YOLOv5s backbone network by (1) optimized small-target detection and (2) adaptive attention mechanism to improve recognition accuracy. In order to overcome the limitation of video only, a dynamic weighting algorithm combining video and multi-sensor data is proposed, which adjusts the strategy according to the real-time fire risk index. Deploying quantitative models on edge devices can improve underground intelligence and response speed. The experimental results show that the improved YOLOv5s is 7.2% higher than the baseline, the detection accuracy of the edge system in the simulated environment is 8.28% higher, and the detection speed is 26% higher than that of cloud computing. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2076-3417 2076-3417 |
| DOI: | 10.3390/app151910589 |