Perceptual Loss-Constrained Adversarial Autoencoder Networks for Hyperspectral Unmixing

Recently, the use of a deep autoencoder-based method in blind spectral unmixing has attracted great attention as the method can achieve superior performance. However, most autoencoder-based unmixing methods use non-structured reconstruction loss to train networks, leading to the ignorance of band-to...

Full description

Saved in:
Bibliographic Details
Published in:IEEE geoscience and remote sensing letters Vol. 19; pp. 1 - 5
Main Authors: Zhao, Min, Wang, Mou, Chen, Jie, Rahardja, Susanto
Format: Journal Article
Language:English
Published: Piscataway IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1545-598X, 1558-0571
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Recently, the use of a deep autoencoder-based method in blind spectral unmixing has attracted great attention as the method can achieve superior performance. However, most autoencoder-based unmixing methods use non-structured reconstruction loss to train networks, leading to the ignorance of band-to-band-dependent characteristics and fine-grained information. To cope with this issue, we propose a general perceptual loss-constrained adversarial autoencoder network for hyperspectral unmixing. Specifically, the adversarial training process is used to update our framework. The discriminate network is found to be efficient in discovering the discrepancy between the reconstructed pixels and their corresponding ground truth. Moreover, the general perceptual loss is combined with the adversarial loss to further improve the consistency of high-level representations. Ablation studies verify the effectiveness of the proposed components of our framework, and experiments with both synthetic and real data illustrate the superiority of our framework when compared with other competing methods.
AbstractList Recently, the use of a deep autoencoder-based method in blind spectral unmixing has attracted great attention as the method can achieve superior performance. However, most autoencoder-based unmixing methods use non-structured reconstruction loss to train networks, leading to the ignorance of band-to-band-dependent characteristics and fine-grained information. To cope with this issue, we propose a general perceptual loss-constrained adversarial autoencoder network for hyperspectral unmixing. Specifically, the adversarial training process is used to update our framework. The discriminate network is found to be efficient in discovering the discrepancy between the reconstructed pixels and their corresponding ground truth. Moreover, the general perceptual loss is combined with the adversarial loss to further improve the consistency of high-level representations. Ablation studies verify the effectiveness of the proposed components of our framework, and experiments with both synthetic and real data illustrate the superiority of our framework when compared with other competing methods.
Author Rahardja, Susanto
Zhao, Min
Wang, Mou
Chen, Jie
Author_xml – sequence: 1
  givenname: Min
  orcidid: 0000-0003-3258-8358
  surname: Zhao
  fullname: Zhao, Min
  organization: School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an, China
– sequence: 2
  givenname: Mou
  orcidid: 0000-0002-6476-2501
  surname: Wang
  fullname: Wang, Mou
  organization: School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an, China
– sequence: 3
  givenname: Jie
  orcidid: 0000-0003-2306-8860
  surname: Chen
  fullname: Chen, Jie
  email: dr.jie.chen@ieee.org
  organization: School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an, China
– sequence: 4
  givenname: Susanto
  orcidid: 0000-0003-0831-6934
  surname: Rahardja
  fullname: Rahardja, Susanto
  organization: School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an, China
BookMark eNp9kM9LwzAUx4NMcJv-AeKl4Lmz-dEmOY6hmzBU1KG3kqav0rklNWnV_fembHjw4OkF3vfz3stnhAbGGkDoHCcTjBN5tZw_Pk1IQsiEYsYo4UdoiNNUxEnK8aB_szROpXg9QSPv10lCmBB8iF4ewGlo2k5toqX1Pp5Z41unagNlNC0_wXnl6tCcdq0Fo20JLrqD9su6dx9V1kWLXRNCDehAbaKV2dbftXk7RceV2ng4O9QxWt1cP88W8fJ-fjubLmNNJG3jVMtSigJEVRQZYZUIV8mMl4IUMisTrDXJKKGUc1YyoSRJi0KpknLgTBYS0zG63M9tnP3owLf52nbOhJU5yUhKs4wRFlJ4n9Iu_NFBlTeu3iq3y3GS9_7y3l_e-8sP_gLD_zC6blVbW9Pr2fxLXuzJGgB-N8lMhDajP8zfgIk
CODEN IGRSBY
CitedBy_id crossref_primary_10_1109_JSTARS_2025_3542228
Cites_doi 10.1109/TGRS.2018.2856929
10.1109/ICCV.2017.304
10.1109/TGRS.2020.2963848
10.1109/LGRS.2019.2900733
10.1109/36.911111
10.1109/TIP.2018.2836316
10.1109/TGRS.2005.844293
10.1109/LGRS.2020.3047481
10.1109/TIP.2019.2893068
10.1109/TIP.2018.2878958
10.1109/TGRS.2020.2992743
10.1109/IGARSS39084.2020.9324087
10.1109/TNNLS.2021.3082289
10.1109/TGRS.2018.2868690
10.1109/TGRS.2021.3110855
10.1109/TGRS.2018.2890633
10.1109/TNNLS.2021.3114203
10.1109/TGRS.2021.3064958
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KL.
KR7
L.G
L7M
L~C
L~D
DOI 10.1109/LGRS.2022.3144327
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest Computer Science Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
Computer and Information Systems Abstracts Professional
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
EISSN 1558-0571
EndPage 5
ExternalDocumentID 10_1109_LGRS_2022_3144327
9684434
Genre orig-research
GrantInformation_xml – fundername: NSFC
  grantid: 62171380
  funderid: 10.13039/501100001809
– fundername: Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University
  funderid: 10.13039/501100002663
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
~02
AAYXX
CITATION
7SC
7SP
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KL.
KR7
L.G
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-5c9d98be8fbb624f8488967d82b96d01cc263233774d48a925bbaad37e749b913
IEDL.DBID RIE
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000752013400010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1545-598X
IngestDate Mon Jun 30 08:13:21 EDT 2025
Sat Nov 29 05:54:10 EST 2025
Tue Nov 18 22:37:18 EST 2025
Wed Aug 27 03:00:15 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-5c9d98be8fbb624f8488967d82b96d01cc263233774d48a925bbaad37e749b913
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2306-8860
0000-0003-0831-6934
0000-0003-3258-8358
0000-0002-6476-2501
PQID 2625366424
PQPubID 75725
PageCount 5
ParticipantIDs proquest_journals_2625366424
crossref_citationtrail_10_1109_LGRS_2022_3144327
crossref_primary_10_1109_LGRS_2022_3144327
ieee_primary_9684434
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE geoscience and remote sensing letters
PublicationTitleAbbrev LGRS
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref15
ref14
ref11
ref10
ref2
ref1
ref17
Goodfellow (ref13); 27
ref16
ref19
ref18
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref6
  doi: 10.1109/TGRS.2018.2856929
– ident: ref14
  doi: 10.1109/ICCV.2017.304
– ident: ref2
  doi: 10.1109/TGRS.2020.2963848
– ident: ref11
  doi: 10.1109/LGRS.2019.2900733
– ident: ref17
  doi: 10.1109/36.911111
– ident: ref15
  doi: 10.1109/TIP.2018.2836316
– ident: ref16
  doi: 10.1109/TGRS.2005.844293
– ident: ref18
  doi: 10.1109/LGRS.2020.3047481
– ident: ref4
  doi: 10.1109/TIP.2019.2893068
– ident: ref3
  doi: 10.1109/TIP.2018.2878958
– ident: ref8
  doi: 10.1109/TGRS.2020.2992743
– ident: ref10
  doi: 10.1109/IGARSS39084.2020.9324087
– ident: ref19
  doi: 10.1109/TNNLS.2021.3082289
– ident: ref5
  doi: 10.1109/TGRS.2018.2868690
– ident: ref1
  doi: 10.1109/TGRS.2021.3110855
– ident: ref7
  doi: 10.1109/TGRS.2018.2890633
– ident: ref12
  doi: 10.1109/TNNLS.2021.3114203
– volume: 27
  start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref13
  article-title: Generative adversarial nets
– ident: ref9
  doi: 10.1109/TGRS.2021.3064958
SSID ssj0024887
Score 2.3662574
Snippet Recently, the use of a deep autoencoder-based method in blind spectral unmixing has attracted great attention as the method can achieve superior performance....
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Ablation
Autoencoder
Convolutional neural networks
Decoding
fine structure
Frameworks
generative adversarial network (GAN)
Generators
Hyperspectral imaging
hyperspectral unmixing
Image reconstruction
Loss measurement
Methods
perceptual loss
Training
Title Perceptual Loss-Constrained Adversarial Autoencoder Networks for Hyperspectral Unmixing
URI https://ieeexplore.ieee.org/document/9684434
https://www.proquest.com/docview/2625366424
Volume 19
WOSCitedRecordID wos000752013400010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0571
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024887
  issn: 1545-598X
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB7aoujFVxWrVXLwJK7msc-jiI9DKeIDewvZR7CgrbSJ2H_v7iatgiJ4y2Fm2cxsMjM7jw_gSDISGUY10ta8I5xlFIlQGRRRRcIkFixT2INNsH6fDwbitgEni14YY4wvPjOn7tHn8vVYle6q7ExQjnGCm9BkjFa9Wl9z9bgHw3MeASKCD-oMZhSKs9713b2NBOPYBqiW3wHIfLNBHlTlx5_Ym5er9f9tbAPWajcyOK_0vgkNM9qClRrR_Hm2BcvXHrJ31oan26p2pbT0Pbsd5DA6PTKE0YHHY55m7hQG52UxdmMttZkE_ao6fBpYnza4sbFq1ZI5sWSPo9fhhzV42_B4dflwcYNqOAWkrE0vEFFCCy4Nz6WkMc65FZmgTPNYCqrDSCk3uz1JrEOoMc9ETKTMMp0ww7CQIkp2oDUaj8wuBEYQmbscqhI5xiTnISG5zhNuIsZzpjoQzgWcqnrWuHuxl9THHKFInU5Sp5O01kkHjhcsb9Wgjb-I204JC8Ja_h3ozrWY1p_iNI1thJdQG2bhvd-59mHVrV3dq3ShVUxKcwBL6r0YTieH_pR9AlgUz4E
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2VTXBhKSDKmgMnhGkWO7aPFYIWUSoEVPQWxUtEJWhR0yL699hOKEggJG45jBPH42TmeZYHcCwoCTSNFVLGvCOcpjHivtQoiCXxo5DTVGJHNkE7Hdbr8dsKnM5qYbTWLvlMn9lLF8tXQzmxR2V1HjOMIzwHCwTj0C-qtb466zFHh2d9AkQ465UxzMDn9Xbz7t5gwTA0ENXcwVLIfLNCjlblx7_YGZjLtf9NbR1WS0fSaxSa34CKHlRhueQ0f5pWYanpSHunm_B4W2SvTIx820wHWZZOxw2hlecYmfPU7kOvMRkPbWNLpUdep8gPzz3j1Xotg1aLosyREesOXvrvxuRtQffy4uG8hUpCBSSNVR8jIrniTGiWCRGHOGNmyXhMFQsFj5UfSGm7t0eRcQkVZikPiRBpqiKqKeaCB9E2zA-GA70DnuZEZDaKKnmGMcmYT0imsojpgLKMyhr4nwucyLLbuH2x58ShDp8nVieJ1UlS6qQGJ7Mhr0Wrjb-EN60SZoLl-tdg_1OLSfkx5kloMF4UG6CFd38fdQTLrYebdtK-6lzvwYp9TnHKsg_z49FEH8CifBv389Gh23EfS_3SyA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Perceptual+Loss-Constrained+Adversarial+Autoencoder+Networks+for+Hyperspectral+Unmixing&rft.jtitle=IEEE+geoscience+and+remote+sensing+letters&rft.au=Zhao%2C+Min&rft.au=Wang%2C+Mou&rft.au=Chen%2C+Jie&rft.au=Rahardja%2C+Susanto&rft.date=2022&rft.issn=1545-598X&rft.eissn=1558-0571&rft.volume=19&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FLGRS.2022.3144327&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LGRS_2022_3144327
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-598X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-598X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-598X&client=summon