A Multiobjective Path-Planning Algorithm With Time Windows for Asset Routing in a Dynamic Weather-Impacted Environment

This paper presents a mixed-initiative tool for multiobjective planning and asset routing (TMPLAR) in dynamic and uncertain environments. TMPLAR is built upon multiobjective dynamic programming algorithms to route assets in a timely fashion, while considering fuel efficiency, voyage time, distance,...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on systems, man, and cybernetics. Systems Ročník 47; číslo 12; s. 3256 - 3271
Hlavní autoři: Sidoti, David, Avvari, Gopi Vinod, Mishra, Manisha, Lingyi Zhang, Nadella, Bala Kishore, Peak, James E., Hansen, James A., Pattipati, Krishna R.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.12.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2168-2216, 2168-2232
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper presents a mixed-initiative tool for multiobjective planning and asset routing (TMPLAR) in dynamic and uncertain environments. TMPLAR is built upon multiobjective dynamic programming algorithms to route assets in a timely fashion, while considering fuel efficiency, voyage time, distance, and adherence to real world constraints (asset vehicle limits, navigator-specified deadlines, etc.). TMPLAR has the potential to be applied in a variety of contexts, including ship, helicopter, or unmanned aerial vehicle routing. The tool provides recommended schedules, consisting of waypoints, associated arrival and departure times, asset speed and bearing, that are optimized with respect to several objectives. The ship navigation is exacerbated by the need to address multiple conflicting objectives, spatial and temporal uncertainty associated with the weather, multiple constraints on asset operation, and the added capability of waiting at a waypoint with the intent to avoid bad weather, conduct opportunistic training drills, or both. The key algorithmic contribution is a multiobjective shortest path algorithm for networks with stochastic nonconvex edge costs and the following problem features: 1) time windows on nodes; 2) ability to choose vessel speed to next node subject to (minimum and/or maximum) speed constraints; 3) ability to select the power plant configuration at each node; and 4) ability to wait at a node. The algorithm is demonstrated on six real world routing scenarios by comparing its performance against an existing operational routing algorithm.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2168-2216
2168-2232
DOI:10.1109/TSMC.2016.2573271