On the Relationship Between Radar Backscatter and Radiometer Brightness Temperature From SMAP
The synergy of active and passive microwave measurements has attracted considerable attention in recent years since they offer complementary information on the characteristics of the observed target (e.g., soil moisture), which motivates the launch of NASA's Soil Moisture Active Passive (SMAP)...
Uloženo v:
| Vydáno v: | IEEE transactions on geoscience and remote sensing Ročník 60; s. 1 - 16 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0196-2892, 1558-0644 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The synergy of active and passive microwave measurements has attracted considerable attention in recent years since they offer complementary information on the characteristics of the observed target (e.g., soil moisture), which motivates the launch of NASA's Soil Moisture Active Passive (SMAP) mission. An assumption of a near-linear relationship between active and passive measurements has been made in the SMAP active-passive baseline algorithm, which is essential to downscale coarse-resolution radiometer brightness temperature (TB) using high-resolution radar backscatter (<inline-formula> <tex-math notation="LaTeX">\sigma ^{0} </tex-math></inline-formula>) but has not yet been fully tested under a wide range of ground conditions. Motivated by this, we first examined the validity of the linear assumption by using concurrent and coincident SMAP active and passive observations under diverse environmental factors (e.g., land cover, climate types, terrain and its complexity, soil texture, vegetation coverage, soil moisture, and its dynamics). We also adopted SMAP enhanced TB to evaluate the performance of the disaggregated TB at the same grid resolution of 9 km. The results reveal there is a generally good linear relationship between <inline-formula> <tex-math notation="LaTeX">\sigma ^{0} </tex-math></inline-formula> (no matter in dB or in linear unit) and TB at a global scale. There is no significant difference in the correlation among the four polarization combinations (<inline-formula> <tex-math notation="LaTeX">\sigma ^{0}_{\text {hh}} </tex-math></inline-formula> versus TB h , <inline-formula> <tex-math notation="LaTeX">\sigma ^{{0}}_{\text {hh}} </tex-math></inline-formula> versus TB v , <inline-formula> <tex-math notation="LaTeX">\sigma ^{{0}}_{\text {vv}} </tex-math></inline-formula> versus TB h , and <inline-formula> <tex-math notation="LaTeX">\sigma ^{{0}}_{\text {vv}} </tex-math></inline-formula> versus TB v ) with the <inline-formula> <tex-math notation="LaTeX">\sigma ^{{0}}_{\text {vv}} </tex-math></inline-formula> and TB h combination displaying an overall slightly higher correlation. The linear relationship between <inline-formula> <tex-math notation="LaTeX">\sigma ^{{0}} </tex-math></inline-formula> and TB is significantly affected by environmental factors. Particularly in bare soils and densely vegetated areas (e.g., large forest fraction and vegetation coverage), and arid and polar climate zones, the linear correlation between active and passive measurements worsens, whereas it is favorable in moderate vegetation and soil moisture as well as large soil moisture dynamic conditions. Interestingly, the linear correlation generally decreases as sand content increases while increases with the increase of clay content. The absolute linear correlation coefficient is higher with larger soil moisture dynamics. When compared to SMAP enhanced TB, it shows the linear assumption may have more influence on the correlation (i.e., temporal evolution) of downscaled TB than its absolute accuracy. These findings can enhance the understanding of the geophysical relationship between radar and radiometer signatures, and thus benefit active-passive joint algorithms for future satellite missions. |
|---|---|
| AbstractList | The synergy of active and passive microwave measurements has attracted considerable attention in recent years since they offer complementary information on the characteristics of the observed target (e.g., soil moisture), which motivates the launch of NASA's Soil Moisture Active Passive (SMAP) mission. An assumption of a near-linear relationship between active and passive measurements has been made in the SMAP active-passive baseline algorithm, which is essential to downscale coarse-resolution radiometer brightness temperature (TB) using high-resolution radar backscatter (<inline-formula> <tex-math notation="LaTeX">\sigma ^{0} </tex-math></inline-formula>) but has not yet been fully tested under a wide range of ground conditions. Motivated by this, we first examined the validity of the linear assumption by using concurrent and coincident SMAP active and passive observations under diverse environmental factors (e.g., land cover, climate types, terrain and its complexity, soil texture, vegetation coverage, soil moisture, and its dynamics). We also adopted SMAP enhanced TB to evaluate the performance of the disaggregated TB at the same grid resolution of 9 km. The results reveal there is a generally good linear relationship between <inline-formula> <tex-math notation="LaTeX">\sigma ^{0} </tex-math></inline-formula> (no matter in dB or in linear unit) and TB at a global scale. There is no significant difference in the correlation among the four polarization combinations (<inline-formula> <tex-math notation="LaTeX">\sigma ^{0}_{\text {hh}} </tex-math></inline-formula> versus TB h , <inline-formula> <tex-math notation="LaTeX">\sigma ^{{0}}_{\text {hh}} </tex-math></inline-formula> versus TB v , <inline-formula> <tex-math notation="LaTeX">\sigma ^{{0}}_{\text {vv}} </tex-math></inline-formula> versus TB h , and <inline-formula> <tex-math notation="LaTeX">\sigma ^{{0}}_{\text {vv}} </tex-math></inline-formula> versus TB v ) with the <inline-formula> <tex-math notation="LaTeX">\sigma ^{{0}}_{\text {vv}} </tex-math></inline-formula> and TB h combination displaying an overall slightly higher correlation. The linear relationship between <inline-formula> <tex-math notation="LaTeX">\sigma ^{{0}} </tex-math></inline-formula> and TB is significantly affected by environmental factors. Particularly in bare soils and densely vegetated areas (e.g., large forest fraction and vegetation coverage), and arid and polar climate zones, the linear correlation between active and passive measurements worsens, whereas it is favorable in moderate vegetation and soil moisture as well as large soil moisture dynamic conditions. Interestingly, the linear correlation generally decreases as sand content increases while increases with the increase of clay content. The absolute linear correlation coefficient is higher with larger soil moisture dynamics. When compared to SMAP enhanced TB, it shows the linear assumption may have more influence on the correlation (i.e., temporal evolution) of downscaled TB than its absolute accuracy. These findings can enhance the understanding of the geophysical relationship between radar and radiometer signatures, and thus benefit active-passive joint algorithms for future satellite missions. The synergy of active and passive microwave measurements has attracted considerable attention in recent years since they offer complementary information on the characteristics of the observed target (e.g., soil moisture), which motivates the launch of NASA’s Soil Moisture Active Passive (SMAP) mission. An assumption of a near-linear relationship between active and passive measurements has been made in the SMAP active–passive baseline algorithm, which is essential to downscale coarse-resolution radiometer brightness temperature (TB) using high-resolution radar backscatter ([Formula Omitted]) but has not yet been fully tested under a wide range of ground conditions. Motivated by this, we first examined the validity of the linear assumption by using concurrent and coincident SMAP active and passive observations under diverse environmental factors (e.g., land cover, climate types, terrain and its complexity, soil texture, vegetation coverage, soil moisture, and its dynamics). We also adopted SMAP enhanced TB to evaluate the performance of the disaggregated TB at the same grid resolution of 9 km. The results reveal there is a generally good linear relationship between [Formula Omitted] (no matter in dB or in linear unit) and TB at a global scale. There is no significant difference in the correlation among the four polarization combinations ([Formula Omitted] versus TBh, [Formula Omitted] versus TBv, [Formula Omitted] versus TBh, and [Formula Omitted] versus TBv) with the [Formula Omitted] and TBh combination displaying an overall slightly higher correlation. The linear relationship between [Formula Omitted] and TB is significantly affected by environmental factors. Particularly in bare soils and densely vegetated areas (e.g., large forest fraction and vegetation coverage), and arid and polar climate zones, the linear correlation between active and passive measurements worsens, whereas it is favorable in moderate vegetation and soil moisture as well as large soil moisture dynamic conditions. Interestingly, the linear correlation generally decreases as sand content increases while increases with the increase of clay content. The absolute linear correlation coefficient is higher with larger soil moisture dynamics. When compared to SMAP enhanced TB, it shows the linear assumption may have more influence on the correlation (i.e., temporal evolution) of downscaled TB than its absolute accuracy. These findings can enhance the understanding of the geophysical relationship between radar and radiometer signatures, and thus benefit active–passive joint algorithms for future satellite missions. |
| Author | Chen, Kun-Shan Zeng, Jiangyuan Bi, Haiyun Cui, Chenyang Shi, Pengfei Ma, Hongliang |
| Author_xml | – sequence: 1 givenname: Jiangyuan orcidid: 0000-0002-5039-6774 surname: Zeng fullname: Zeng, Jiangyuan email: zengjy@radi.ac.cn organization: State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China – sequence: 2 givenname: Pengfei surname: Shi fullname: Shi, Pengfei organization: State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China – sequence: 3 givenname: Kun-Shan orcidid: 0000-0001-7698-9861 surname: Chen fullname: Chen, Kun-Shan organization: State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China – sequence: 4 givenname: Hongliang orcidid: 0000-0002-8260-8030 surname: Ma fullname: Ma, Hongliang organization: State Key Laboratory of Information Engineering in Surveying, Mapping, and Remote Sensing, Wuhan University, Wuhan, China – sequence: 5 givenname: Haiyun surname: Bi fullname: Bi, Haiyun organization: State Key Laboratory of Earthquake Dynamics, Institute of Geology, China Earthquake Administration, Beijing, China – sequence: 6 givenname: Chenyang surname: Cui fullname: Cui, Chenyang organization: Suzhou Industrial Park Surveying, Mapping and Geoinformation Company, Ltd., Suzhou, Jiangsu, China |
| BookMark | eNp9kEtPAjEUhRuDiYD-AOOmievBttN2ZpZABE0wGMClmXQ6tzLIPGxLjP_eGSEuXLi6uSfnu48zQL2qrgCha0pGlJLkbjNfrUeMMDoKKRWUkzPUp0LEAZGc91Cf0EQGLE7YBRo4tyOEckGjPnpdVthvAa9gr3xRV25bNHgC_hOgwiuVK4snSr87rbwHi1WVd2pRl9C1E1u8bX0FzuENlA1Y5Q8W8MzWJV4_jZ8v0blRewdXpzpEL7P7zfQhWCznj9PxItAsCX3AdZjEiRIRJ5qYLONKSgWZkTTmSagVibgJSZ4Zw_I4I0a1kgDDtSAxAKhwiG6PcxtbfxzA-XRXH2zVrkyZZDwSMmK8dUVHl7a1cxZMqgv_87W3qtinlKRdlmmXZdplmZ6ybEn6h2xsUSr79S9zc2SK9sRffyIkoZKF31bKgmk |
| CODEN | IGRSD2 |
| CitedBy_id | crossref_primary_10_3390_s25082503 crossref_primary_10_1109_TGRS_2024_3361890 crossref_primary_10_1016_j_rse_2023_113569 crossref_primary_10_1080_10095020_2025_2493713 crossref_primary_10_1109_TGRS_2025_3533425 crossref_primary_10_1109_TGRS_2022_3176748 crossref_primary_10_1109_TGRS_2024_3523484 crossref_primary_10_1016_j_rse_2022_113344 |
| Cites_doi | 10.1016/j.rse.2019.03.021 10.1016/j.rse.2015.03.018 10.1109/TGRS.1981.350328 10.1109/TGRS.2010.2089526 10.1109/TGRS.2018.2864689 10.1127/0941-2948/2006/0130 10.1029/2012GL052988 10.1109/TGRS.2017.2762462 10.1109/TGRS.2014.2373972 10.1109/JSTARS.2016.2570424 10.1109/TGRS.2019.2955542 10.1109/JSTARS.2016.2611491 10.1016/j.jag.2019.01.005 10.5194/hess-14-2605-2010 10.1016/j.rse.2015.11.011 10.1109/TGRS.2020.2991252 10.1038/s41586-021-03325-5 10.1109/IGARSS.2017.8127919 10.1109/TGRS.2013.2257605 10.1109/JPROC.2010.2043918 10.3390/rs10010033 10.1016/j.rse.2015.03.008 10.2136/sssaj2013.03.0093 10.1109/TGRS.2017.2734070 10.1016/S0034-4257(02)00096-2 10.1016/j.rse.2017.08.025 10.5721/EuJRS20124511 10.1016/j.rse.2018.02.006 10.1007/s10712-008-9044-0 10.1109/TGRS.2016.2561938 10.1109/IGARSS.2016.7729886 10.1109/JSTARS.2016.2562660 10.2136/vzj2016.10.0105 10.18393/ejss.2016.4.266-274 10.1016/j.rse.2014.08.021 10.1016/j.rse.2018.04.011 10.3998/0472119356 10.1109/TGRS.2013.2280701 10.1038/s41558-020-00945-z 10.1016/j.jag.2015.08.002 10.1016/j.rse.2012.02.002 10.1175/JAMC-D-13-0270.1 10.1016/j.rse.2019.111380 10.1002/qj.3803 10.1016/j.xinn.2021.100146 10.1029/JC087iC13p11229 10.1109/TGRS.2010.2096514 10.1073/pnas.2015821118 10.1109/36.210456 10.1016/j.rse.2019.111215 10.1109/TGRS.2017.2688403 10.1002/2016rg000543 10.1109/TGRS.2006.871199 10.1109/TGRS.2020.3035204 10.1109/TGRS.2015.2407611 10.3390/rs6098594 10.1109/JSTARS.2013.2272053 10.1109/TGRS.2009.2022088 10.1080/17538947.2021.1907461 10.1016/j.rse.2015.02.002 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| DOI | 10.1109/TGRS.2021.3115140 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1558-0644 |
| EndPage | 16 |
| ExternalDocumentID | 10_1109_TGRS_2021_3115140 9560162 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 41971317; 41976171 funderid: 10.13039/501100001809 – fundername: Youth Innovation Promotion Association CAS grantid: 2018082 funderid: 10.13039/501100002367 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 Y6R AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| ID | FETCH-LOGICAL-c293t-4c3989a5740c0fbb4a66aebf618493ca074f30dbff2d8b0faca05ef4c508eeea3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 22 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000732868500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0196-2892 |
| IngestDate | Tue Aug 26 14:40:30 EDT 2025 Sat Nov 29 02:50:16 EST 2025 Tue Nov 18 20:44:39 EST 2025 Wed Aug 27 03:00:17 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-4c3989a5740c0fbb4a66aebf618493ca074f30dbff2d8b0faca05ef4c508eeea3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-5039-6774 0000-0002-8260-8030 0000-0001-7698-9861 |
| PQID | 2624756724 |
| PQPubID | 85465 |
| PageCount | 16 |
| ParticipantIDs | crossref_citationtrail_10_1109_TGRS_2021_3115140 crossref_primary_10_1109_TGRS_2021_3115140 proquest_journals_2624756724 ieee_primary_9560162 |
| PublicationCentury | 2000 |
| PublicationDate | 20220000 2022-00-00 20220101 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – year: 2022 text: 20220000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on geoscience and remote sensing |
| PublicationTitleAbbrev | TGRS |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref57 ref12 ref56 ref15 ref59 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref48 ref47 ref42 Entekhabi (ref14) 2014 Das (ref35) 2019 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref34 ref31 ref30 ref33 ref32 O’Neill (ref38) 2020 ref2 ref1 ref39 ref24 ref68 ref23 ref67 ref26 ref25 ref20 ref64 ref63 ref22 ref66 ref21 ref65 Entekhabi (ref36) 2016 ref28 O’Neill (ref37) 2020 ref27 ref29 Kim (ref41) 2017 Nachtergaele (ref44) 2012 ref60 ref62 ref61 Hastings (ref45) 1998; 4 |
| References_xml | – ident: ref20 doi: 10.1016/j.rse.2019.03.021 – ident: ref52 doi: 10.1016/j.rse.2015.03.018 – ident: ref66 doi: 10.1109/TGRS.1981.350328 – ident: ref17 doi: 10.1109/TGRS.2010.2089526 – ident: ref26 doi: 10.1109/TGRS.2018.2864689 – ident: ref43 doi: 10.1127/0941-2948/2006/0130 – ident: ref65 doi: 10.1029/2012GL052988 – year: 2019 ident: ref35 article-title: Algorithm theoretical basis document-SMAP-Sentinel L2 radar/radiometer (active/passive) soil moisture data products – ident: ref33 doi: 10.1109/TGRS.2017.2762462 – ident: ref6 doi: 10.1109/TGRS.2014.2373972 – ident: ref22 doi: 10.1109/JSTARS.2016.2570424 – ident: ref49 doi: 10.1109/TGRS.2019.2955542 – ident: ref7 doi: 10.1109/JSTARS.2016.2611491 – ident: ref12 doi: 10.1016/j.jag.2019.01.005 – ident: ref55 doi: 10.5194/hess-14-2605-2010 – ident: ref9 doi: 10.1016/j.rse.2015.11.011 – ident: ref28 doi: 10.1109/TGRS.2020.2991252 – ident: ref1 doi: 10.1038/s41586-021-03325-5 – ident: ref48 doi: 10.1109/IGARSS.2017.8127919 – ident: ref18 doi: 10.1109/TGRS.2013.2257605 – ident: ref13 doi: 10.1109/JPROC.2010.2043918 – ident: ref67 doi: 10.3390/rs10010033 – ident: ref5 doi: 10.1016/j.rse.2015.03.008 – ident: ref4 doi: 10.2136/sssaj2013.03.0093 – ident: ref11 doi: 10.1109/TGRS.2017.2734070 – ident: ref46 doi: 10.1016/S0034-4257(02)00096-2 – ident: ref39 doi: 10.1016/j.rse.2017.08.025 – ident: ref21 doi: 10.5721/EuJRS20124511 – ident: ref40 doi: 10.1016/j.rse.2018.02.006 – ident: ref56 doi: 10.1007/s10712-008-9044-0 – year: 2020 ident: ref37 article-title: SMAP L3 radiometer global daily 36 km EASE-grid soil moisture – ident: ref64 doi: 10.1109/TGRS.2016.2561938 – ident: ref30 doi: 10.1109/IGARSS.2016.7729886 – year: 2014 ident: ref14 article-title: SMAP handbook soil moisture active passive, mapping soil moisture freeze/thaw from space – ident: ref23 doi: 10.1109/JSTARS.2016.2562660 – ident: ref3 doi: 10.2136/vzj2016.10.0105 – ident: ref62 doi: 10.18393/ejss.2016.4.266-274 – ident: ref25 doi: 10.1016/j.rse.2014.08.021 – ident: ref54 doi: 10.1016/j.rse.2018.04.011 – ident: ref53 doi: 10.3998/0472119356 – ident: ref57 doi: 10.1109/TGRS.2013.2280701 – ident: ref2 doi: 10.1038/s41558-020-00945-z – ident: ref10 doi: 10.1016/j.jag.2015.08.002 – ident: ref34 doi: 10.1016/j.rse.2012.02.002 – ident: ref42 doi: 10.1175/JAMC-D-13-0270.1 – ident: ref19 doi: 10.1016/j.rse.2019.111380 – year: 2020 ident: ref38 article-title: SMAP enhanced L3 radiometer global daily 9 km EASE-grid soil moisture – ident: ref47 doi: 10.1002/qj.3803 – ident: ref58 doi: 10.1016/j.xinn.2021.100146 – ident: ref63 doi: 10.1029/JC087iC13p11229 – year: 2017 ident: ref41 article-title: Soil moisture active passive (SMAP) project calibration and validation for the L2/3_SM_A validated-stage 1 release data products (version 4) – volume-title: Harmonized World Soil Database year: 2012 ident: ref44 – ident: ref60 doi: 10.1109/TGRS.2010.2096514 – ident: ref50 doi: 10.1073/pnas.2015821118 – ident: ref61 doi: 10.1109/36.210456 – ident: ref51 doi: 10.1016/j.rse.2019.111215 – ident: ref8 doi: 10.1109/TGRS.2017.2688403 – ident: ref32 doi: 10.1002/2016rg000543 – ident: ref15 doi: 10.1109/TGRS.2006.871199 – volume: 4 start-page: 218 issue: 6 year: 1998 ident: ref45 article-title: Development & assessment of the global land one-km base elevation digital elevation model (GLOBE) publication-title: Group – ident: ref27 doi: 10.1109/TGRS.2020.3035204 – ident: ref24 doi: 10.1109/TGRS.2015.2407611 – ident: ref68 doi: 10.3390/rs6098594 – ident: ref31 doi: 10.1109/JSTARS.2013.2272053 – year: 2016 ident: ref36 article-title: SMAP L3 radar/radiometer global daily 9 km EASE-grid soil moisture – ident: ref16 doi: 10.1109/TGRS.2009.2022088 – ident: ref29 doi: 10.1080/17538947.2021.1907461 – ident: ref59 doi: 10.1016/j.rse.2015.02.002 |
| SSID | ssj0014517 |
| Score | 2.4825404 |
| Snippet | The synergy of active and passive microwave measurements has attracted considerable attention in recent years since they offer complementary information on the... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Active microwave Algorithms Arid regions Backscatter Backscattering Brightness Brightness temperature Climate Correlation coefficient Correlation coefficients Dynamics Environmental factors Land cover Microwave measurement Microwave radiometry passive microwave Radar Radar signatures Radiometers Resolution Soil Soil conditions Soil dynamics Soil moisture soil moisture (SM) soil moisture active passive (SMAP) Soil properties Soil texture Spaceborne radar Surface radiation temperature synergy Texture Vegetation Vegetation mapping |
| Title | On the Relationship Between Radar Backscatter and Radiometer Brightness Temperature From SMAP |
| URI | https://ieeexplore.ieee.org/document/9560162 https://www.proquest.com/docview/2624756724 |
| Volume | 60 |
| WOSCitedRecordID | wos000732868500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1558-0644 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014517 issn: 0196-2892 databaseCode: RIE dateStart: 19800101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS9xAFH9YsVAP1WpLt7Uyh55Ko8lkktk5usXVg7WiW_BSwny8QaHNyu7q39_3JjEILYXekmEGkvkl837vG-Cjr0KBJBkyJHJACoqL2ZgEXaZQYmG0I46ckD7T5-fj62tzsQafh1wYREzBZ3jAl8mXH-b-nk1lh8zlCz5wn2mtu1ytwWOgqqJPja4zUiJk78EscnM4O7m8Ik1QFgdcWqZgO8cTGZSaqvxxEifxMt36vwfbhpc9jRRHHe6vYA3bHdh8UlxwB56n4E6_3IUf31pBPE8MgW83t3di0gVoiUsb7EJMONXep1qbwraBRzkvn28nSX_nE1HMkEh2V4RZTBfzX-Lq69HFa_g-PZ59Oc36tgqZJ9m-ypQvzdjYSqvc59E5Zevaoovc-sWU3hKpiGUeXIwyjF0eLQ1VGJUnLkdvbss3sN7OW3wLgoCurTMhuOCJCZSWtDeMiEob6aIOI8gfN7rxfc1xbn3xs0m6R24axqZhbJoemxF8GpbcdQU3_jV5l8EYJvY4jGDvEc2m_yWXjayl0lWtpXr391Xv4YXk3IZkX9mD9dXiHj_Ahn9Y3S4X--lr-w01y9J5 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9RAFD6UVlEfvLSKW6vOg09iuslkkuw8dsW14nYt7Rb6ImEuZ7Cg2bK77e_vOZM0FJSCb8kwA8l8yZzv3AE-uMJnSJIhQSIHpKDYkIxI0CUKJWa6ssSRI9LTajYbnZ_r4w341OfCIGIMPsN9voy-fL9wV2wqGzKXz_jA3SqUklmbrdX7DFSRdcnRZUJqhOx8mFmqh_OvJ6ekC8psn4vLZGzpuCOFYluVv87iKGAmz_7v0Z7D045IioMW-Rewgc02PLlTXnAbHsbwTrfagZ8_GkFMT_Shb78uLsW4DdESJ8abpRhzsr2L1TaFaTyPcmY-346jBs9nopgj0ey2DLOYLBd_xOnRwfFLOJt8mX8-TLrGCokj6b5OlMv1SJuiUqlLg7XKlKVBG7j5i86dIVoR8tTbEKQf2TQYGiowKEdsjt7c5K9gs1k0-BoEQV0aq7233hEXyA3pbxgQVaWlDZUfQHq70bXrqo5z84vfddQ-Ul0zNjVjU3fYDOBjv-SyLblx3-QdBqOf2OEwgL1bNOvup1zVspSqKspKqt1_r3oPjw7nR9N6-m32_Q08lpzpEK0te7C5Xl7hW3jgrtcXq-W7-OXdAE-E1cA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Relationship+Between+Radar+Backscatter+and+Radiometer+Brightness+Temperature+From+SMAP&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Zeng%2C+Jiangyuan&rft.au=Shi%2C+Pengfei&rft.au=Chen%2C+Kun-Shan&rft.au=Ma%2C+Hongliang&rft.date=2022&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=60&rft.spage=1&rft.epage=16&rft_id=info:doi/10.1109%2FTGRS.2021.3115140&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2021_3115140 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |