On the Relationship Between Radar Backscatter and Radiometer Brightness Temperature From SMAP

The synergy of active and passive microwave measurements has attracted considerable attention in recent years since they offer complementary information on the characteristics of the observed target (e.g., soil moisture), which motivates the launch of NASA's Soil Moisture Active Passive (SMAP)...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on geoscience and remote sensing Ročník 60; s. 1 - 16
Hlavní autoři: Zeng, Jiangyuan, Shi, Pengfei, Chen, Kun-Shan, Ma, Hongliang, Bi, Haiyun, Cui, Chenyang
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0196-2892, 1558-0644
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The synergy of active and passive microwave measurements has attracted considerable attention in recent years since they offer complementary information on the characteristics of the observed target (e.g., soil moisture), which motivates the launch of NASA's Soil Moisture Active Passive (SMAP) mission. An assumption of a near-linear relationship between active and passive measurements has been made in the SMAP active-passive baseline algorithm, which is essential to downscale coarse-resolution radiometer brightness temperature (TB) using high-resolution radar backscatter (<inline-formula> <tex-math notation="LaTeX">\sigma ^{0} </tex-math></inline-formula>) but has not yet been fully tested under a wide range of ground conditions. Motivated by this, we first examined the validity of the linear assumption by using concurrent and coincident SMAP active and passive observations under diverse environmental factors (e.g., land cover, climate types, terrain and its complexity, soil texture, vegetation coverage, soil moisture, and its dynamics). We also adopted SMAP enhanced TB to evaluate the performance of the disaggregated TB at the same grid resolution of 9 km. The results reveal there is a generally good linear relationship between <inline-formula> <tex-math notation="LaTeX">\sigma ^{0} </tex-math></inline-formula> (no matter in dB or in linear unit) and TB at a global scale. There is no significant difference in the correlation among the four polarization combinations (<inline-formula> <tex-math notation="LaTeX">\sigma ^{0}_{\text {hh}} </tex-math></inline-formula> versus TB h , <inline-formula> <tex-math notation="LaTeX">\sigma ^{{0}}_{\text {hh}} </tex-math></inline-formula> versus TB v , <inline-formula> <tex-math notation="LaTeX">\sigma ^{{0}}_{\text {vv}} </tex-math></inline-formula> versus TB h , and <inline-formula> <tex-math notation="LaTeX">\sigma ^{{0}}_{\text {vv}} </tex-math></inline-formula> versus TB v ) with the <inline-formula> <tex-math notation="LaTeX">\sigma ^{{0}}_{\text {vv}} </tex-math></inline-formula> and TB h combination displaying an overall slightly higher correlation. The linear relationship between <inline-formula> <tex-math notation="LaTeX">\sigma ^{{0}} </tex-math></inline-formula> and TB is significantly affected by environmental factors. Particularly in bare soils and densely vegetated areas (e.g., large forest fraction and vegetation coverage), and arid and polar climate zones, the linear correlation between active and passive measurements worsens, whereas it is favorable in moderate vegetation and soil moisture as well as large soil moisture dynamic conditions. Interestingly, the linear correlation generally decreases as sand content increases while increases with the increase of clay content. The absolute linear correlation coefficient is higher with larger soil moisture dynamics. When compared to SMAP enhanced TB, it shows the linear assumption may have more influence on the correlation (i.e., temporal evolution) of downscaled TB than its absolute accuracy. These findings can enhance the understanding of the geophysical relationship between radar and radiometer signatures, and thus benefit active-passive joint algorithms for future satellite missions.
AbstractList The synergy of active and passive microwave measurements has attracted considerable attention in recent years since they offer complementary information on the characteristics of the observed target (e.g., soil moisture), which motivates the launch of NASA's Soil Moisture Active Passive (SMAP) mission. An assumption of a near-linear relationship between active and passive measurements has been made in the SMAP active-passive baseline algorithm, which is essential to downscale coarse-resolution radiometer brightness temperature (TB) using high-resolution radar backscatter (<inline-formula> <tex-math notation="LaTeX">\sigma ^{0} </tex-math></inline-formula>) but has not yet been fully tested under a wide range of ground conditions. Motivated by this, we first examined the validity of the linear assumption by using concurrent and coincident SMAP active and passive observations under diverse environmental factors (e.g., land cover, climate types, terrain and its complexity, soil texture, vegetation coverage, soil moisture, and its dynamics). We also adopted SMAP enhanced TB to evaluate the performance of the disaggregated TB at the same grid resolution of 9 km. The results reveal there is a generally good linear relationship between <inline-formula> <tex-math notation="LaTeX">\sigma ^{0} </tex-math></inline-formula> (no matter in dB or in linear unit) and TB at a global scale. There is no significant difference in the correlation among the four polarization combinations (<inline-formula> <tex-math notation="LaTeX">\sigma ^{0}_{\text {hh}} </tex-math></inline-formula> versus TB h , <inline-formula> <tex-math notation="LaTeX">\sigma ^{{0}}_{\text {hh}} </tex-math></inline-formula> versus TB v , <inline-formula> <tex-math notation="LaTeX">\sigma ^{{0}}_{\text {vv}} </tex-math></inline-formula> versus TB h , and <inline-formula> <tex-math notation="LaTeX">\sigma ^{{0}}_{\text {vv}} </tex-math></inline-formula> versus TB v ) with the <inline-formula> <tex-math notation="LaTeX">\sigma ^{{0}}_{\text {vv}} </tex-math></inline-formula> and TB h combination displaying an overall slightly higher correlation. The linear relationship between <inline-formula> <tex-math notation="LaTeX">\sigma ^{{0}} </tex-math></inline-formula> and TB is significantly affected by environmental factors. Particularly in bare soils and densely vegetated areas (e.g., large forest fraction and vegetation coverage), and arid and polar climate zones, the linear correlation between active and passive measurements worsens, whereas it is favorable in moderate vegetation and soil moisture as well as large soil moisture dynamic conditions. Interestingly, the linear correlation generally decreases as sand content increases while increases with the increase of clay content. The absolute linear correlation coefficient is higher with larger soil moisture dynamics. When compared to SMAP enhanced TB, it shows the linear assumption may have more influence on the correlation (i.e., temporal evolution) of downscaled TB than its absolute accuracy. These findings can enhance the understanding of the geophysical relationship between radar and radiometer signatures, and thus benefit active-passive joint algorithms for future satellite missions.
The synergy of active and passive microwave measurements has attracted considerable attention in recent years since they offer complementary information on the characteristics of the observed target (e.g., soil moisture), which motivates the launch of NASA’s Soil Moisture Active Passive (SMAP) mission. An assumption of a near-linear relationship between active and passive measurements has been made in the SMAP active–passive baseline algorithm, which is essential to downscale coarse-resolution radiometer brightness temperature (TB) using high-resolution radar backscatter ([Formula Omitted]) but has not yet been fully tested under a wide range of ground conditions. Motivated by this, we first examined the validity of the linear assumption by using concurrent and coincident SMAP active and passive observations under diverse environmental factors (e.g., land cover, climate types, terrain and its complexity, soil texture, vegetation coverage, soil moisture, and its dynamics). We also adopted SMAP enhanced TB to evaluate the performance of the disaggregated TB at the same grid resolution of 9 km. The results reveal there is a generally good linear relationship between [Formula Omitted] (no matter in dB or in linear unit) and TB at a global scale. There is no significant difference in the correlation among the four polarization combinations ([Formula Omitted] versus TBh, [Formula Omitted] versus TBv, [Formula Omitted] versus TBh, and [Formula Omitted] versus TBv) with the [Formula Omitted] and TBh combination displaying an overall slightly higher correlation. The linear relationship between [Formula Omitted] and TB is significantly affected by environmental factors. Particularly in bare soils and densely vegetated areas (e.g., large forest fraction and vegetation coverage), and arid and polar climate zones, the linear correlation between active and passive measurements worsens, whereas it is favorable in moderate vegetation and soil moisture as well as large soil moisture dynamic conditions. Interestingly, the linear correlation generally decreases as sand content increases while increases with the increase of clay content. The absolute linear correlation coefficient is higher with larger soil moisture dynamics. When compared to SMAP enhanced TB, it shows the linear assumption may have more influence on the correlation (i.e., temporal evolution) of downscaled TB than its absolute accuracy. These findings can enhance the understanding of the geophysical relationship between radar and radiometer signatures, and thus benefit active–passive joint algorithms for future satellite missions.
Author Chen, Kun-Shan
Zeng, Jiangyuan
Bi, Haiyun
Cui, Chenyang
Shi, Pengfei
Ma, Hongliang
Author_xml – sequence: 1
  givenname: Jiangyuan
  orcidid: 0000-0002-5039-6774
  surname: Zeng
  fullname: Zeng, Jiangyuan
  email: zengjy@radi.ac.cn
  organization: State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
– sequence: 2
  givenname: Pengfei
  surname: Shi
  fullname: Shi, Pengfei
  organization: State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
– sequence: 3
  givenname: Kun-Shan
  orcidid: 0000-0001-7698-9861
  surname: Chen
  fullname: Chen, Kun-Shan
  organization: State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
– sequence: 4
  givenname: Hongliang
  orcidid: 0000-0002-8260-8030
  surname: Ma
  fullname: Ma, Hongliang
  organization: State Key Laboratory of Information Engineering in Surveying, Mapping, and Remote Sensing, Wuhan University, Wuhan, China
– sequence: 5
  givenname: Haiyun
  surname: Bi
  fullname: Bi, Haiyun
  organization: State Key Laboratory of Earthquake Dynamics, Institute of Geology, China Earthquake Administration, Beijing, China
– sequence: 6
  givenname: Chenyang
  surname: Cui
  fullname: Cui, Chenyang
  organization: Suzhou Industrial Park Surveying, Mapping and Geoinformation Company, Ltd., Suzhou, Jiangsu, China
BookMark eNp9kEtPAjEUhRuDiYD-AOOmievBttN2ZpZABE0wGMClmXQ6tzLIPGxLjP_eGSEuXLi6uSfnu48zQL2qrgCha0pGlJLkbjNfrUeMMDoKKRWUkzPUp0LEAZGc91Cf0EQGLE7YBRo4tyOEckGjPnpdVthvAa9gr3xRV25bNHgC_hOgwiuVK4snSr87rbwHi1WVd2pRl9C1E1u8bX0FzuENlA1Y5Q8W8MzWJV4_jZ8v0blRewdXpzpEL7P7zfQhWCznj9PxItAsCX3AdZjEiRIRJ5qYLONKSgWZkTTmSagVibgJSZ4Zw_I4I0a1kgDDtSAxAKhwiG6PcxtbfxzA-XRXH2zVrkyZZDwSMmK8dUVHl7a1cxZMqgv_87W3qtinlKRdlmmXZdplmZ6ybEn6h2xsUSr79S9zc2SK9sRffyIkoZKF31bKgmk
CODEN IGRSD2
CitedBy_id crossref_primary_10_3390_s25082503
crossref_primary_10_1109_TGRS_2024_3361890
crossref_primary_10_1016_j_rse_2023_113569
crossref_primary_10_1080_10095020_2025_2493713
crossref_primary_10_1109_TGRS_2025_3533425
crossref_primary_10_1109_TGRS_2022_3176748
crossref_primary_10_1109_TGRS_2024_3523484
crossref_primary_10_1016_j_rse_2022_113344
Cites_doi 10.1016/j.rse.2019.03.021
10.1016/j.rse.2015.03.018
10.1109/TGRS.1981.350328
10.1109/TGRS.2010.2089526
10.1109/TGRS.2018.2864689
10.1127/0941-2948/2006/0130
10.1029/2012GL052988
10.1109/TGRS.2017.2762462
10.1109/TGRS.2014.2373972
10.1109/JSTARS.2016.2570424
10.1109/TGRS.2019.2955542
10.1109/JSTARS.2016.2611491
10.1016/j.jag.2019.01.005
10.5194/hess-14-2605-2010
10.1016/j.rse.2015.11.011
10.1109/TGRS.2020.2991252
10.1038/s41586-021-03325-5
10.1109/IGARSS.2017.8127919
10.1109/TGRS.2013.2257605
10.1109/JPROC.2010.2043918
10.3390/rs10010033
10.1016/j.rse.2015.03.008
10.2136/sssaj2013.03.0093
10.1109/TGRS.2017.2734070
10.1016/S0034-4257(02)00096-2
10.1016/j.rse.2017.08.025
10.5721/EuJRS20124511
10.1016/j.rse.2018.02.006
10.1007/s10712-008-9044-0
10.1109/TGRS.2016.2561938
10.1109/IGARSS.2016.7729886
10.1109/JSTARS.2016.2562660
10.2136/vzj2016.10.0105
10.18393/ejss.2016.4.266-274
10.1016/j.rse.2014.08.021
10.1016/j.rse.2018.04.011
10.3998/0472119356
10.1109/TGRS.2013.2280701
10.1038/s41558-020-00945-z
10.1016/j.jag.2015.08.002
10.1016/j.rse.2012.02.002
10.1175/JAMC-D-13-0270.1
10.1016/j.rse.2019.111380
10.1002/qj.3803
10.1016/j.xinn.2021.100146
10.1029/JC087iC13p11229
10.1109/TGRS.2010.2096514
10.1073/pnas.2015821118
10.1109/36.210456
10.1016/j.rse.2019.111215
10.1109/TGRS.2017.2688403
10.1002/2016rg000543
10.1109/TGRS.2006.871199
10.1109/TGRS.2020.3035204
10.1109/TGRS.2015.2407611
10.3390/rs6098594
10.1109/JSTARS.2013.2272053
10.1109/TGRS.2009.2022088
10.1080/17538947.2021.1907461
10.1016/j.rse.2015.02.002
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2021.3115140
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 16
ExternalDocumentID 10_1109_TGRS_2021_3115140
9560162
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 41971317; 41976171
  funderid: 10.13039/501100001809
– fundername: Youth Innovation Promotion Association CAS
  grantid: 2018082
  funderid: 10.13039/501100002367
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c293t-4c3989a5740c0fbb4a66aebf618493ca074f30dbff2d8b0faca05ef4c508eeea3
IEDL.DBID RIE
ISICitedReferencesCount 22
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000732868500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0196-2892
IngestDate Tue Aug 26 14:40:30 EDT 2025
Sat Nov 29 02:50:16 EST 2025
Tue Nov 18 20:44:39 EST 2025
Wed Aug 27 03:00:17 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-4c3989a5740c0fbb4a66aebf618493ca074f30dbff2d8b0faca05ef4c508eeea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5039-6774
0000-0002-8260-8030
0000-0001-7698-9861
PQID 2624756724
PQPubID 85465
PageCount 16
ParticipantIDs crossref_citationtrail_10_1109_TGRS_2021_3115140
crossref_primary_10_1109_TGRS_2021_3115140
proquest_journals_2624756724
ieee_primary_9560162
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref48
ref47
ref42
Entekhabi (ref14) 2014
Das (ref35) 2019
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref34
ref31
ref30
ref33
ref32
O’Neill (ref38) 2020
ref2
ref1
ref39
ref24
ref68
ref23
ref67
ref26
ref25
ref20
ref64
ref63
ref22
ref66
ref21
ref65
Entekhabi (ref36) 2016
ref28
O’Neill (ref37) 2020
ref27
ref29
Kim (ref41) 2017
Nachtergaele (ref44) 2012
ref60
ref62
ref61
Hastings (ref45) 1998; 4
References_xml – ident: ref20
  doi: 10.1016/j.rse.2019.03.021
– ident: ref52
  doi: 10.1016/j.rse.2015.03.018
– ident: ref66
  doi: 10.1109/TGRS.1981.350328
– ident: ref17
  doi: 10.1109/TGRS.2010.2089526
– ident: ref26
  doi: 10.1109/TGRS.2018.2864689
– ident: ref43
  doi: 10.1127/0941-2948/2006/0130
– ident: ref65
  doi: 10.1029/2012GL052988
– year: 2019
  ident: ref35
  article-title: Algorithm theoretical basis document-SMAP-Sentinel L2 radar/radiometer (active/passive) soil moisture data products
– ident: ref33
  doi: 10.1109/TGRS.2017.2762462
– ident: ref6
  doi: 10.1109/TGRS.2014.2373972
– ident: ref22
  doi: 10.1109/JSTARS.2016.2570424
– ident: ref49
  doi: 10.1109/TGRS.2019.2955542
– ident: ref7
  doi: 10.1109/JSTARS.2016.2611491
– ident: ref12
  doi: 10.1016/j.jag.2019.01.005
– ident: ref55
  doi: 10.5194/hess-14-2605-2010
– ident: ref9
  doi: 10.1016/j.rse.2015.11.011
– ident: ref28
  doi: 10.1109/TGRS.2020.2991252
– ident: ref1
  doi: 10.1038/s41586-021-03325-5
– ident: ref48
  doi: 10.1109/IGARSS.2017.8127919
– ident: ref18
  doi: 10.1109/TGRS.2013.2257605
– ident: ref13
  doi: 10.1109/JPROC.2010.2043918
– ident: ref67
  doi: 10.3390/rs10010033
– ident: ref5
  doi: 10.1016/j.rse.2015.03.008
– ident: ref4
  doi: 10.2136/sssaj2013.03.0093
– ident: ref11
  doi: 10.1109/TGRS.2017.2734070
– ident: ref46
  doi: 10.1016/S0034-4257(02)00096-2
– ident: ref39
  doi: 10.1016/j.rse.2017.08.025
– ident: ref21
  doi: 10.5721/EuJRS20124511
– ident: ref40
  doi: 10.1016/j.rse.2018.02.006
– ident: ref56
  doi: 10.1007/s10712-008-9044-0
– year: 2020
  ident: ref37
  article-title: SMAP L3 radiometer global daily 36 km EASE-grid soil moisture
– ident: ref64
  doi: 10.1109/TGRS.2016.2561938
– ident: ref30
  doi: 10.1109/IGARSS.2016.7729886
– year: 2014
  ident: ref14
  article-title: SMAP handbook soil moisture active passive, mapping soil moisture freeze/thaw from space
– ident: ref23
  doi: 10.1109/JSTARS.2016.2562660
– ident: ref3
  doi: 10.2136/vzj2016.10.0105
– ident: ref62
  doi: 10.18393/ejss.2016.4.266-274
– ident: ref25
  doi: 10.1016/j.rse.2014.08.021
– ident: ref54
  doi: 10.1016/j.rse.2018.04.011
– ident: ref53
  doi: 10.3998/0472119356
– ident: ref57
  doi: 10.1109/TGRS.2013.2280701
– ident: ref2
  doi: 10.1038/s41558-020-00945-z
– ident: ref10
  doi: 10.1016/j.jag.2015.08.002
– ident: ref34
  doi: 10.1016/j.rse.2012.02.002
– ident: ref42
  doi: 10.1175/JAMC-D-13-0270.1
– ident: ref19
  doi: 10.1016/j.rse.2019.111380
– year: 2020
  ident: ref38
  article-title: SMAP enhanced L3 radiometer global daily 9 km EASE-grid soil moisture
– ident: ref47
  doi: 10.1002/qj.3803
– ident: ref58
  doi: 10.1016/j.xinn.2021.100146
– ident: ref63
  doi: 10.1029/JC087iC13p11229
– year: 2017
  ident: ref41
  article-title: Soil moisture active passive (SMAP) project calibration and validation for the L2/3_SM_A validated-stage 1 release data products (version 4)
– volume-title: Harmonized World Soil Database
  year: 2012
  ident: ref44
– ident: ref60
  doi: 10.1109/TGRS.2010.2096514
– ident: ref50
  doi: 10.1073/pnas.2015821118
– ident: ref61
  doi: 10.1109/36.210456
– ident: ref51
  doi: 10.1016/j.rse.2019.111215
– ident: ref8
  doi: 10.1109/TGRS.2017.2688403
– ident: ref32
  doi: 10.1002/2016rg000543
– ident: ref15
  doi: 10.1109/TGRS.2006.871199
– volume: 4
  start-page: 218
  issue: 6
  year: 1998
  ident: ref45
  article-title: Development & assessment of the global land one-km base elevation digital elevation model (GLOBE)
  publication-title: Group
– ident: ref27
  doi: 10.1109/TGRS.2020.3035204
– ident: ref24
  doi: 10.1109/TGRS.2015.2407611
– ident: ref68
  doi: 10.3390/rs6098594
– ident: ref31
  doi: 10.1109/JSTARS.2013.2272053
– year: 2016
  ident: ref36
  article-title: SMAP L3 radar/radiometer global daily 9 km EASE-grid soil moisture
– ident: ref16
  doi: 10.1109/TGRS.2009.2022088
– ident: ref29
  doi: 10.1080/17538947.2021.1907461
– ident: ref59
  doi: 10.1016/j.rse.2015.02.002
SSID ssj0014517
Score 2.4825404
Snippet The synergy of active and passive microwave measurements has attracted considerable attention in recent years since they offer complementary information on the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Active microwave
Algorithms
Arid regions
Backscatter
Backscattering
Brightness
Brightness temperature
Climate
Correlation coefficient
Correlation coefficients
Dynamics
Environmental factors
Land cover
Microwave measurement
Microwave radiometry
passive microwave
Radar
Radar signatures
Radiometers
Resolution
Soil
Soil conditions
Soil dynamics
Soil moisture
soil moisture (SM)
soil moisture active passive (SMAP)
Soil properties
Soil texture
Spaceborne radar
Surface radiation temperature
synergy
Texture
Vegetation
Vegetation mapping
Title On the Relationship Between Radar Backscatter and Radiometer Brightness Temperature From SMAP
URI https://ieeexplore.ieee.org/document/9560162
https://www.proquest.com/docview/2624756724
Volume 60
WOSCitedRecordID wos000732868500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0644
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014517
  issn: 0196-2892
  databaseCode: RIE
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5WUdCDj1VxfZGDJ7HaZtOmPbri6sVV3BW8SEmmCQrald3V328mrUVQBG9tSKDN1858k3kBHJpYSqVtGGBseCBS6gaobBGgzrSykY0Fpr7ZhBwM0oeH7LYFx00ujDHGB5-ZE7r0vvxijO90VHZKXD4igTsnpaxytRqPgYijOjU6CZwRwWsPZhRmp6PLu6GzBHl0QqVlIjrn-KaDfFOVH5LYq5f-6v8ebA1WahrJzirc16FlyjYsfysu2IZFH9yJ0w14vCmZ43msCXx7en5jvSpAi92pQk1Yj1Lt0dfaZKosaJTy8um25-13kohsZBzJroows_5k_MqG12e3m3DfvxidXwV1W4UAnW6fBQK7WZqpWIoQQ6u1UEmijLbU-iXronKkwnbDQlvLi1SHVrmh2FiBjsu5N1fdLZgvx6XZBoZCCzfCEYXThimmjk8KRXKiMOSy7UD4tdE51jXHqfXFS-5tjzDLCZucsMlrbDpw1Cx5qwpu_DV5g8BoJtY4dGDvC828_iWnOU-4kHEiudj5fdUuLHHKbfDnK3swP5u8m31YwI_Z83Ry4L-2T_Xo0r0
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB7EB-rBt7g-c_AkVtts-jruiquirqIreJGSTBMUtCu7q7_fTNotgiJ4a0MCbb525pvMC2Bfh3EslfE9DDX3RELdAKXJPVSpkiYwocDENZuIu93k8TG9nYDDOhdGa-2Cz_QRXTpfft7HDzoqOyYuH5DAnQqF4EGZrVX7DEQYVMnRkWfNCF75MAM_Pe6d3d1bW5AHR1RcJqCTjm9ayLVV-SGLnYLpLP7v0ZZgoSKSrFUivwwTuliB-W_lBVdgxoV34nAVnm4KZpkeq0Pfnl_eWbsM0WJ3MpcD1qZke3TVNpkschqlzHy6bTsLnmQi62lLs8syzKwz6L-x--vW7Ro8dE57J-de1VjBQ6vdR57AZpqkMoyFj75RSsgokloZav6SNlFaWmGafq6M4XmifCPtUKiNQMvm7JvL5jpMFv1CbwBDoYQd4YjC6sMEE8sohSRJkWty2jbAH290hlXVcWp-8Zo568NPM8ImI2yyCpsGHNRL3suSG39NXiUw6okVDg3YHqOZVT_lMOMRF3EYxVxs_r5qD2bPe9dX2dVF93IL5jhlOrjTlm2YHA0-9A5M4-foZTjYdV_eFxWC1gQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Relationship+Between+Radar+Backscatter+and+Radiometer+Brightness+Temperature+From+SMAP&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Zeng%2C+Jiangyuan&rft.au=Shi%2C+Pengfei&rft.au=Chen%2C+Kun-Shan&rft.au=Ma%2C+Hongliang&rft.date=2022&rft.pub=IEEE&rft.issn=0196-2892&rft.volume=60&rft.spage=1&rft.epage=16&rft_id=info:doi/10.1109%2FTGRS.2021.3115140&rft.externalDocID=9560162
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon