Understanding the Role of Ocean Dynamics in Midlatitude Sea Surface Temperature Variability Using a Simple Stochastic Climate Model

In a recent paper, we argued that ocean dynamics increase the variability of midlatitude sea surface temperatures (SSTs) on monthly to interannual time scales, but act to damp lower-frequency SST variability over broad midlatitude regions. Here, we use two configurations of a simple stochastic clima...

Full description

Saved in:
Bibliographic Details
Published in:Journal of climate Vol. 35; no. 11; pp. 3313 - 3333
Main Authors: Patrizio, Casey R., Thompson, David W. J.
Format: Journal Article
Language:English
Published: Boston American Meteorological Society 01.06.2022
Subjects:
ISSN:0894-8755, 1520-0442
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In a recent paper, we argued that ocean dynamics increase the variability of midlatitude sea surface temperatures (SSTs) on monthly to interannual time scales, but act to damp lower-frequency SST variability over broad midlatitude regions. Here, we use two configurations of a simple stochastic climate model to provide new insights into this important aspect of climate variability. The simplest configuration includes the forcing and damping of SST variability by observed surface heat fluxes only, and the more complex configuration includes forcing and damping by ocean processes, which are estimated indirectly from monthly observations. It is found that the simple model driven only by the observed surface heat fluxes generally produces midlatitude SST power spectra that are too red compared to observations. Including ocean processes in the model reduces this discrepancy by whitening the midlatitude SST spectra. In particular, ocean processes generally increase the SST variance on <2-yr time scales and decrease it on >2-yr time scales. This happens because oceanic forcing increases the midlatitude SST variance across many time scales, but oceanic damping outweighs oceanic forcing on >2-yr time scales, particularly away from the western boundary currents. The whitening of midlatitude SST variability by ocean processes also operates in NCAR’s Community Earth System Model (CESM). That is, midlatitude SST spectra are generally redder when the same atmospheric model is coupled to a slab rather than dynamically active ocean model. Overall, the results suggest that forcing and damping by ocean processes play essential roles in driving midlatitude SST variability.
AbstractList In a recent paper, we argued that ocean dynamics increase the variability of midlatitude sea surface temperatures (SSTs) on monthly to interannual time scales, but act to damp lower-frequency SST variability over broad midlatitude regions. Here, we use two configurations of a simple stochastic climate model to provide new insights into this important aspect of climate variability. The simplest configuration includes the forcing and damping of SST variability by observed surface heat fluxes only, and the more complex configuration includes forcing and damping by ocean processes, which are estimated indirectly from monthly observations. It is found that the simple model driven only by the observed surface heat fluxes generally produces midlatitude SST power spectra that are too red compared to observations. Including ocean processes in the model reduces this discrepancy by whitening the midlatitude SST spectra. In particular, ocean processes generally increase the SST variance on <2-yr time scales and decrease it on >2-yr time scales. This happens because oceanic forcing increases the midlatitude SST variance across many time scales, but oceanic damping outweighs oceanic forcing on >2-yr time scales, particularly away from the western boundary currents. The whitening of midlatitude SST variability by ocean processes also operates in NCAR’s Community Earth System Model (CESM). That is, midlatitude SST spectra are generally redder when the same atmospheric model is coupled to a slab rather than dynamically active ocean model. Overall, the results suggest that forcing and damping by ocean processes play essential roles in driving midlatitude SST variability.
In a recent paper, we argued that ocean dynamics increase the variability of midlatitude sea surface temperatures (SSTs) on monthly to interannual time scales, but act to damp lower-frequency SST variability over broad midlatitude regions. Here, we use two configurations of a simple stochastic climate model to provide new insights into this important aspect of climate variability. The simplest configuration includes the forcing and damping of SST variability by observed surface heat fluxes only, and the more complex configuration includes forcing and damping by ocean processes, which are estimated indirectly from monthly observations. It is found that the simple model driven only by the observed surface heat fluxes generally produces midlatitude SST power spectra that are too red compared to observations. Including ocean processes in the model reduces this discrepancy by whitening the midlatitude SST spectra. In particular, ocean processes generally increase the SST variance on <2-yr time scales and decrease it on >2-yr time scales. This happens because oceanic forcing increases the midlatitude SST variance across many time scales, but oceanic damping outweighs oceanic forcing on >2-yr time scales, particularly away from the western boundary currents. The whitening of midlatitude SST variability by ocean processes also operates in NCAR’s Community Earth System Model (CESM). That is, midlatitude SST spectra are generally redder when the same atmospheric model is coupled to a slab rather than dynamically active ocean model. Overall, the results suggest that forcing and damping by ocean processes play essential roles in driving midlatitude SST variability.
Author Patrizio, Casey R.
Thompson, David W. J.
Author_xml – sequence: 1
  givenname: Casey R.
  surname: Patrizio
  fullname: Patrizio, Casey R.
– sequence: 2
  givenname: David W. J.
  surname: Thompson
  fullname: Thompson, David W. J.
BookMark eNp9kLFPGzEUxi0EEgG6d6lkifnos3P2XUaUAKUKQmpIV8tnP4Ojix1s35CZf7wXpWLo0Oktv9_39H0X5DTEgIR8ZXDDWCO-_5wvH6tFxVkFrK1v2AmZMMGhgrrmp2QC7ayu2kaIc3KR8waAcQkwIR_rYDHlooP14ZWWN6S_Yo80OvpsUAe62Ae99SZTH-iTt70uvgwW6Qo1XQ3JaYP0Bbc7TLoMCelvnbzufO_Lnq7zIXPk_HY3Zq5KNG86F2_ovPdbXZA-RYv9FTlzus_45e-9JOv7u5f5j2r5_PA4v11Whs-mpaobZ00HHQhnasM5oNZCdk4wgUIa6IwUDrWTprGtnNkZwlRw2UorwDBhp5fk-pi7S_F9wFzUJg4pjC8Vl41oWCOlGCl5pEyKOSd0yvgyto6hJO17xUAdBleHwdVCcaYOgys2ivCPuEtjy7T_n_LtqGxyiemT5w2vRcth-geJR5DI
CitedBy_id crossref_primary_10_1038_s41558_025_02245_w
crossref_primary_10_1186_s40562_023_00305_7
crossref_primary_10_1029_2021GL095172
crossref_primary_10_1038_s41612_024_00702_5
crossref_primary_10_2478_cee_2024_0088
Cites_doi 10.1029/2019GL086321
10.1175/JCLI-D-17-0159.1
10.1016/B978-0-12-811714-9.00009-7
10.1002/jgrc.20390
10.1007/s00382-002-0294-0
10.1175/1520-0469(1998)055<0477:TBEOAO>2.0.CO;2
10.1175/1520-0442-16.9.1364
10.1175/1520-0442(1998)011<2310:ASFITN>2.0.CO;2
10.3402/tellusa.v30i2.10321
10.1175/2010JCLI3343.1
10.1175/JCLI3904.1
10.1038/ngeo1863
10.1007/s00382-012-1500-3
10.1029/JC086iC07p06522
10.1016/j.dynatmoce.2008.01.001
10.1029/RG023i004p00357
10.3402/tellusa.v29i4.11362
10.1175/JCLI-D-19-0295.1
10.1175/JCLI-D-18-0576.1
10.1175/BAMS-D-13-00255.1
10.1126/science.aab3980
10.1146/annurev-marine-120408-151453
10.1175/JCLI-D-16-0810.1
10.1175/JCLI-D-16-0358.1
10.1029/2018GL080474
10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2
10.1175/JCLI-D-20-0476.1
10.5194/os-15-779-2019
10.1002/2016GL068694
10.1175/JCLI-D-18-0269.1
10.1038/srep17785
10.1029/1999GL011322
10.1002/2016JC012278
10.1038/302295a0
10.1175/JCLI4103.1
10.1007/s00382-002-0252-x
10.1002/2017GL072884
10.1175/1520-0485(1983)013<1131:TADMFM>2.0.CO;2
10.1175/JCLI-D-14-00579.1
10.1016/S0074-6142(01)80134-0
10.1002/2017GL074342
10.1007/s003820050158
10.1175/JCLI-D-15-0015.1
10.1175/1520-0485(1984)014<0231:MHTITP>2.0.CO;2
10.1175/JCLI-D-15-0508.1
10.1175/2007JCLI1824.1
10.1038/nature18640
10.1175/1520-0442(1996)009<2424:VIAMLO>2.0.CO;2
10.1175/1520-0485(1992)022<0859:LASHFA>2.0.CO;2
10.1175/JCLI-D-13-00316.1
10.1175/1520-0442(2000)013<3361:SOASII>2.0.CO;2
10.1016/0198-0149(82)90099-1
10.1175/1520-0442(2004)017<3109:PICVLB>2.0.CO;2
10.1002/2016GL067925
10.1007/s00382-020-05573-z
10.1175/JCLI3521.1
10.1002/2016GL071337
10.1175/JCLI-D-11-00290.1
10.1175/JCLI-D-20-0167.1
10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2
10.1175/1520-0442(2003)016<3853:EVOTPD>2.0.CO;2
10.1175/BAMS-D-12-00121.1
10.1029/2018GL080716
10.1175/1520-0442(2001)014<1399:ASOTIO>2.0.CO;2
10.1175/1520-0442(2003)016<0057:UTPOSS>2.0.CO;2
10.1029/2018GL077378
10.1175/JCLI-D-16-0758.1
10.1175/1520-0485(1995)025<0092:ASAMOS>2.0.CO;2
10.1126/science.1132588
10.1007/s00382-002-0253-9
10.1038/nature12268
10.1175/1520-0442(1992)005<0354:LASHFA>2.0.CO;2
10.1175/JCLI4190.1
10.1016/0377-0265(79)90025-3
10.1002/2015RG000493
10.1175/JCLI-D-19-0283.1
10.1175/JCLI-D-13-00123.1
10.1029/2019RG000644
10.1007/s00382-017-3834-3
10.1029/2008GM000794
10.3402/tellusa.v28i6.11316
ContentType Journal Article
Copyright 2022 American Meteorological Society
Copyright American Meteorological Society Jun 2022
Copyright_xml – notice: 2022 American Meteorological Society
– notice: Copyright American Meteorological Society Jun 2022
DBID AAYXX
CITATION
7QH
7TG
7UA
C1K
F1W
H96
KL.
L.G
DOI 10.1175/JCLI-D-21-0184.1
DatabaseName CrossRef
Aqualine
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Aqualine
Meteorological & Geoastrophysical Abstracts - Academic
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional

DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 1520-0442
EndPage 3333
ExternalDocumentID 10_1175_JCLI_D_21_0184_1
27245820
GroupedDBID -~X
29K
4.4
5GY
7X2
7XC
85S
88I
8AF
8FE
8FG
8FH
8G5
8R4
8R5
AAEFR
AAFWJ
ABBHK
ABDBF
ABDNZ
ABUWG
ACGFO
ACGOD
ACIHN
ACUHS
AEAQA
AEKFB
AENEX
AEUPB
AEUYN
AFKRA
AFRAH
AGFAN
AIFVT
ALMA_UNASSIGNED_HOLDINGS
ALQLQ
APEBS
ARAPS
ATCPS
AZQEC
BCU
BEC
BENPR
BES
BGLVJ
BHPHI
BKSAR
BLC
BPHCQ
CCPQU
CS3
D-I
D1K
DU5
DWQXO
E3Z
EAD
EAP
EAS
EAU
EBS
EDH
EMK
EPL
EST
ESX
F5P
F8P
FRP
GNUQQ
GUQSH
H13
HCIFZ
H~9
I-F
IZHOT
JAAYA
JENOY
JKQEH
JLEZI
JLXEF
JPL
JST
K6-
LK5
M0K
M1Q
M2O
M2P
M2Q
M7R
MV1
OK1
P2P
P62
PATMY
PCBAR
PHGZM
PHGZT
PQQKQ
PROAC
PYCSY
Q2X
QF4
QM9
QN7
QO4
RWA
RWE
RWL
RXW
S0X
SA0
SJFOW
SWMRO
TAE
TN5
TR2
TUS
U5U
UNMZH
~02
AAYXX
ABUFD
AFFHD
BANNL
CITATION
PQGLB
7QH
7TG
7UA
C1K
F1W
H96
KL.
L.G
PUEGO
ID FETCH-LOGICAL-c293t-47fdcb0b05fc4c220eaa56bf515e56c0bc65feaf6c7d869d9e0352686d50c15d3
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000799290500009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0894-8755
IngestDate Sat Aug 23 14:59:08 EDT 2025
Sat Nov 29 04:58:18 EST 2025
Tue Nov 18 21:32:38 EST 2025
Thu Jun 19 19:57:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License http://www.ametsoc.org/PUBSReuseLicenses
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c293t-47fdcb0b05fc4c220eaa56bf515e56c0bc65feaf6c7d869d9e0352686d50c15d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2566-3647
PQID 2675717665
PQPubID 32902
PageCount 21
ParticipantIDs proquest_journals_2675717665
crossref_citationtrail_10_1175_JCLI_D_21_0184_1
crossref_primary_10_1175_JCLI_D_21_0184_1
jstor_primary_27245820
PublicationCentury 2000
PublicationDate 20220601
2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 6
  year: 2022
  text: 20220601
  day: 1
PublicationDecade 2020
PublicationPlace Boston
PublicationPlace_xml – name: Boston
PublicationTitle Journal of climate
PublicationYear 2022
Publisher American Meteorological Society
Publisher_xml – name: American Meteorological Society
References Roberts (ref1471) 2017; 122
Patrizio (ref1411) 2021; 34
Putrasahan (ref1431) 2017; 44
Frankignoul (ref1091) 1977; 29
Alexander (ref851) 2002; 15
Bellucci (ref51) 2020; 56
Small (ref691) 2020; 33
Gelaro (ref1151) 2017; 30
Frankignoul (ref1131) 2002; 19
Bishop (ref891) 2017; 30
Buckley (ref941) 2014; 27
Zuo (ref821) 2019; 15
Alexander (ref841) 1996; 9
Ma (ref461) 2015; 5
Frankignoul (ref271) 1983; 13
Wu (ref1581) 2006; 19
Zhang (ref811) 2019; 57
Gulev (ref1161) 2013; 499
Zhang (ref791) 2013; 118
Patrizio (ref581) 2021; 34
Jin (ref1221) 1997; 54
Ma (ref471) 2016; 535
Reynolds (ref631) 2007; 20
Murphy (ref511) 2017; 44
Deser (ref1051) 2010; 2
Alexander (ref831) 2010; Vol. 189
Myers (ref1361) 2020; 47
Reynolds (ref1461) 2007; 20
Saravanan (ref651) 2019
Ma (ref1301) 2016; 535
Newman (ref1381) 2016; 29
Wills (ref1561) 2019a; 32
Cayan (ref151) 1992b; 5
Frankignoul (ref241) 1981; 86
Gulev (ref331) 2013; 499
Alexander (ref11) 1996; 9
Hall (ref351) 1982; 29A
Hasselmann (ref361) 1976; 28
Bryden (ref91) 2001; Vol. 77
Alexander (ref01) 2010; Vol. 189
Siqueira (ref661) 2016; 43
O’Reilly (ref1391) 2016; 43
Bitz (ref71) 2012; 25
Qiu (ref1441) 2007; 20
Kay (ref401) 2015; 96
Small (ref1501) 2008; 45
Frankignoul (ref1081) 1985; 23
Hasselmann (ref1191) 1976; 28
Delworth (ref191) 2017; 30
Kirtman (ref421) 2012; 39
Zhang (ref1621) 2013; 118
McPhaden (ref1321) 2006; 314
Alexander (ref21) 2002; 15
Kwon (ref1271) 2007; 20
Marshall (ref1311) 2001; 14
Smirnov (ref1531) 2014; 27
Kirtman (ref1251) 2012; 39
Hausmann (ref371) 2016; 29
Park (ref571) 2005; 18
Putrasahan (ref601) 2017; 44
Kwon (ref441) 2007; 20
Zhang (ref1631) 2017; 44
Cane (ref131) 2017; 30
Cayan (ref981) 1992b; 5
Siqueira (ref1491) 2016; 43
de Coëtlogon (ref181) 2003; 16
Frenger (ref311) 2013; 6
O’Reilly (ref561) 2016; 43
Yamamoto (ref1591) 2020; 33
Deser (ref1031) 2003; 16
Barsugli (ref861) 1998; 55
Barsugli (ref31) 1998; 55
Frankignoul (ref301) 2002; 19
Buckley (ref111) 2014; 27
Buckley (ref951) 2015; 28
Philander (ref591) 1983; 302
Smirnov (ref701) 2014; 27
Zuo (ref1651) 2019; 15
Qiu (ref611) 2007; 20
Small (ref1521) 2020; 33
Wills (ref1571) 2019b; 46
Newman (ref1371) 2003; 16
Cayan (ref141) 1992a; 22
Czaja (ref1001) 2000; 27
Clement (ref161) 2015; 350
Delworth (ref1021) 2017; 30
Cayan (ref971) 1992a; 22
Frankignoul (ref261) 1977; 29
Kim (ref411) 2018; 45
Hall (ref341) 1997; 13
Yan (ref1601) 2018; 45
von Storch (ref721) 2000; 13
Myers (ref531) 2020; 47
Yan (ref771) 2018; 45
Gelaro (ref321) 2017; 30
Bishop (ref61) 2017; 30
Kleeman (ref431) 1995; 25
Newman (ref551) 2016; 29
Clement (ref991) 2015; 350
Reynolds (ref1451) 1978; 30
Reynolds (ref621) 1978; 30
Frankignoul (ref1071) 1981; 86
McPhaden (ref491) 2006; 314
Small (ref671) 2008; 45
Wu (ref751) 2006; 19
Bellomo (ref41) 2018; 50
Small (ref681) 2019; 32
Zhang (ref1641) 2019; 57
Jin (ref391) 1997; 54
Czaja (ref171) 2000; 27
Frankignoul (ref1061) 1979; 3
Frankignoul (ref1121) 1998; 11
Kim (ref1241) 2018; 45
Kleeman (ref1261) 1995; 25
Bellucci (ref881) 2020; 56
Frankignoul (ref1111) 2002; 19
Deser (ref211) 2004; 17
Wills (ref741) 2019b; 46
Roberts (ref641) 2017; 122
Buckley (ref931) 2016; 54
Hausmann (ref1201) 2016; 29
Marshall (ref481) 2001; 14
Park (ref1401) 2005; 18
Ma (ref1291) 2015; 5
Deser (ref1041) 2004; 17
Frenger (ref1141) 2013; 6
Frankignoul (ref251) 1985; 23
Mignot (ref501) 2003; 20
Kwon (ref1281) 2010; 23
Murphy (ref1351) 2021; 34
Small (ref1511) 2019; 32
Hall (ref1181) 1982; 29A
Deser (ref201) 2003; 16
Buckley (ref121) 2015; 28
Talley (ref1541) 1984; 14
Kwon (ref451) 2010; 23
Hurrell (ref1211) 2013; 94
de Coëtlogon (ref1011) 2003; 16
Bellomo (ref871) 2018; 50
Saravanan (ref1481) 2019
Cane (ref961) 2017; 30
Bitz (ref901) 2012; 25
Frankignoul (ref291) 1998; 11
Hurrell (ref381) 2013; 94
Kay (ref1231) 2015; 96
Murphy (ref521) 2021; 34
Frankignoul (ref1101) 1983; 13
Buckley (ref101) 2016; 54
Mignot (ref1331) 2003; 20
Zhang (ref801) 2017; 44
Frankignoul (ref231) 1979; 3
Philander (ref1421) 1983; 302
Newman (ref541) 2003; 16
von Storch (ref1551) 2000; 13
Bryden (ref921) 2001; Vol. 77
Bjerknes (ref911) 1964; Vol. 10
Wills (ref731) 2019a; 32
Deser (ref221) 2010; 2
Yamamoto (ref761) 2020; 33
Bjerknes (ref81) 1964; Vol. 10
Frankignoul (ref281) 2002; 19
Murphy (ref1341) 2017; 44
Talley (ref711) 1984; 14
Hall (ref1171) 1997; 13
References_xml – volume: 47
  start-page: e2019GL086321
  year: 2020
  ident: ref531
  article-title: Relative contributions of atmospheric, oceanic, and coupled processes to North Pacific and North Atlantic variability
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2019GL086321
– volume: 30
  start-page: 8207
  year: 2017
  ident: ref891
  article-title: Scale dependence of midlatitude air–sea interaction
  publication-title: J. Climate
  doi: 10.1175/JCLI-D-17-0159.1
– start-page: 183
  volume-title: Sub-Seasonal to Seasonal Prediction
  year: 2019
  ident: ref1481
  article-title: Midlatitude mesoscale ocean–atmosphere interaction and its relevance to S2S prediction
  doi: 10.1016/B978-0-12-811714-9.00009-7
– volume: 118
  start-page: 5772
  year: 2013
  ident: ref1621
  article-title: Multidecadal North Atlantic sea surface temperature and atlantic meridional overturning circulation variability in CMIP5 historical simulations
  publication-title: J. Geophys. Res. Oceans
  doi: 10.1002/jgrc.20390
– volume: 20
  start-page: 555
  year: 2003
  ident: ref501
  article-title: On the interannual variability of surface salinity in the Atlantic
  publication-title: Climate Dyn.
  doi: 10.1007/s00382-002-0294-0
– volume: 55
  start-page: 477
  year: 1998
  ident: ref861
  article-title: The basic effects of atmosphere–ocean thermal coupling on midlatitude variability
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(1998)055<0477:TBEOAO>2.0.CO;2
– volume: 16
  start-page: 1364
  year: 2003
  ident: ref181
  article-title: The persistence of winter sea surface temperature in the North Atlantic
  publication-title: J. Climate
  doi: 10.1175/1520-0442-16.9.1364
– volume: 11
  start-page: 2310
  year: 1998
  ident: ref1121
  article-title: Air–sea feedback in the North Atlantic and surface boundary conditions for ocean models
  publication-title: J. Climate
  doi: 10.1175/1520-0442(1998)011<2310:ASFITN>2.0.CO;2
– volume: 30
  start-page: 97
  year: 1978
  ident: ref621
  article-title: Sea surface temperature anomalies in the North Pacific Ocean
  publication-title: Tellus
  doi: 10.3402/tellusa.v30i2.10321
– volume: 23
  start-page: 3249
  year: 2010
  ident: ref451
  article-title: Role of the Gulf Stream and Kuroshio–Oyashio systems in large-scale atmosphere–ocean interaction: A review
  publication-title: J. Climate
  doi: 10.1175/2010JCLI3343.1
– volume: 19
  start-page: 4914
  year: 2006
  ident: ref1581
  article-title: Local air–sea relationship in observations and model simulations
  publication-title: J. Climate
  doi: 10.1175/JCLI3904.1
– volume: 6
  start-page: 608
  year: 2013
  ident: ref311
  article-title: Imprint of Southern Ocean eddies on winds, clouds and rainfall
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo1863
– volume: 39
  start-page: 1303
  year: 2012
  ident: ref421
  article-title: Impact of ocean model resolution on CCSM climate simulations
  publication-title: Climate Dyn.
  doi: 10.1007/s00382-012-1500-3
– volume: 86
  start-page: 6522
  year: 1981
  ident: ref241
  article-title: Low-frequency temperature fluctuations off Bermuda
  publication-title: J. Geophys. Res.
  doi: 10.1029/JC086iC07p06522
– volume: 45
  start-page: 274
  year: 2008
  ident: ref671
  article-title: Air–sea interaction over ocean fronts and eddies
  publication-title: Dyn. Atmos. Oceans
  doi: 10.1016/j.dynatmoce.2008.01.001
– volume: 23
  start-page: 357
  year: 1985
  ident: ref251
  article-title: Sea surface temperature anomalies, planetary waves, and air–sea feedback in the middle latitudes
  publication-title: Rev. Geophys.
  doi: 10.1029/RG023i004p00357
– volume: 29
  start-page: 289
  year: 1977
  ident: ref261
  article-title: Stochastic climate models, Part II: Application to sea-surface temperature anomalies and thermocline variability
  publication-title: Tellus
  doi: 10.3402/tellusa.v29i4.11362
– volume: 33
  start-page: 577
  year: 2020
  ident: ref1521
  article-title: What drives upper-ocean temperature variability in coupled climate models and observations?
  publication-title: J. Climate
  doi: 10.1175/JCLI-D-19-0295.1
– volume: 32
  start-page: 2397
  year: 2019
  ident: ref681
  article-title: Air–sea turbulent heat fluxes in climate models and observational analyses: What drives their variability?
  publication-title: J. Climate
  doi: 10.1175/JCLI-D-18-0576.1
– volume: 96
  start-page: 1333
  year: 2015
  ident: ref1231
  article-title: The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability
  publication-title: Bull. Amer. Meteor. Soc.
  doi: 10.1175/BAMS-D-13-00255.1
– volume: 350
  start-page: 320
  year: 2015
  ident: ref991
  article-title: The Atlantic Multidecadal Oscillation without a role for ocean circulation
  publication-title: Science
  doi: 10.1126/science.aab3980
– volume: 350
  start-page: 320
  year: 2015
  ident: ref161
  article-title: The Atlantic Multidecadal Oscillation without a role for ocean circulation
  publication-title: Science
  doi: 10.1126/science.aab3980
– volume: 2
  start-page: 115
  year: 2010
  ident: ref1051
  article-title: Sea surface temperature variability: Patterns and mechanisms
  publication-title: Annu. Rev. Mar. Sci.
  doi: 10.1146/annurev-marine-120408-151453
– volume: 30
  start-page: 7529
  year: 2017
  ident: ref961
  article-title: Low-pass filtering, heat flux, and Atlantic multidecadal variability
  publication-title: J. Climate
  doi: 10.1175/JCLI-D-16-0810.1
– volume: 96
  start-page: 1333
  year: 2015
  ident: ref401
  article-title: The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability
  publication-title: Bull. Amer. Meteor. Soc.
  doi: 10.1175/BAMS-D-13-00255.1
– volume: 30
  start-page: 3789
  year: 2017
  ident: ref1021
  article-title: The central role of ocean dynamics in connecting the North Atlantic Oscillation to the extratropical component of the Atlantic multidecadal oscillation
  publication-title: J. Climate
  doi: 10.1175/JCLI-D-16-0358.1
– volume: 45
  start-page: 13
  year: 2018
  ident: ref1241
  article-title: Key role of internal ocean dynamics in Atlantic multidecadal variability during the last half century
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2018GL080474
– volume: 54
  start-page: 811
  year: 1997
  ident: ref1221
  article-title: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2
– volume: 47
  start-page: e2019GL086321
  year: 2020
  ident: ref1361
  article-title: Relative contributions of atmospheric, oceanic, and coupled processes to North Pacific and North Atlantic variability
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2019GL086321
– volume: 34
  start-page: 2567
  year: 2021
  ident: ref1411
  article-title: Quantifying the role of ocean dynamics in ocean mixed-layer temperature variability
  publication-title: J. Climate
  doi: 10.1175/JCLI-D-20-0476.1
– volume: 15
  start-page: 779
  year: 2019
  ident: ref821
  article-title: The ECMWF operational ensemble reanalysis–analysis system for ocean and sea ice: A description of the system and assessment
  publication-title: Ocean Sci.
  doi: 10.5194/os-15-779-2019
– volume: 43
  start-page: 3964
  year: 2016
  ident: ref661
  article-title: Atlantic near-term climate variability and the role of a resolved Gulf Stream
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2016GL068694
– volume: 32
  start-page: 251
  year: 2019a
  ident: ref1561
  article-title: Ocean–atmosphere dynamical coupling fundamental to the Atlantic multidecadal oscillation
  publication-title: J. Climate
  doi: 10.1175/JCLI-D-18-0269.1
– volume: 5
  start-page: 17785
  year: 2015
  ident: ref1291
  article-title: Distant influence of Kuroshio eddies on North Pacific weather patterns?
  publication-title: Sci. Rep.
  doi: 10.1038/srep17785
– volume: Vol. 10
  start-page: 1
  volume-title: Advances in Geophysics
  year: 1964
  ident: ref911
  article-title: Atlantic air–sea interaction
– volume: 27
  start-page: 1927
  year: 2000
  ident: ref171
  article-title: On the interpretation of AGCMs response to prescribed time-varying SST anomalies
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/1999GL011322
– volume: 122
  start-page: 726
  year: 2017
  ident: ref641
  article-title: Surface flux and ocean heat transport convergence contributions to seasonal and interannual variations of ocean heat content
  publication-title: J. Geophys. Res. Oceans
  doi: 10.1002/2016JC012278
– volume: 27
  start-page: 1927
  year: 2000
  ident: ref1001
  article-title: On the interpretation of AGCMs response to prescribed time-varying SST anomalies
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/1999GL011322
– volume: 302
  start-page: 295
  year: 1983
  ident: ref591
  article-title: El Niño Southern Oscillation phenomena
  publication-title: Nature
  doi: 10.1038/302295a0
– volume: 20
  start-page: 2416
  year: 2007
  ident: ref441
  article-title: North Pacific decadal variability in the Community Climate System Model version 2
  publication-title: J. Climate
  doi: 10.1175/JCLI4103.1
– volume: 19
  start-page: 633
  year: 2002
  ident: ref1111
  article-title: The surface heat flux feedback. Part I: Estimates from observations in the Atlantic and the North Pacific
  publication-title: Climate Dyn.
  doi: 10.1007/s00382-002-0252-x
– volume: 44
  start-page: 6352
  year: 2017
  ident: ref601
  article-title: Importance of ocean mesoscale variability for air–sea interactions in the Gulf of Mexico
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2017GL072884
– volume: 13
  start-page: 1131
  year: 1983
  ident: ref271
  article-title: Testing a dynamical model for mid-latitude sea surface temperature anomalies
  publication-title: J. Phys. Oceanogr.
  doi: 10.1175/1520-0485(1983)013<1131:TADMFM>2.0.CO;2
– volume: 55
  start-page: 477
  year: 1998
  ident: ref31
  article-title: The basic effects of atmosphere–ocean thermal coupling on midlatitude variability
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(1998)055<0477:TBEOAO>2.0.CO;2
– volume: 28
  start-page: 3943
  year: 2015
  ident: ref951
  article-title: Determining the origins of advective heat transport convergence variability in the North Atlantic
  publication-title: J. Climate
  doi: 10.1175/JCLI-D-14-00579.1
– volume: Vol. 77
  start-page: 455
  volume-title: Ocean Circulation and Climate: Observing and Modelling the Global Ocean
  year: 2001
  ident: ref921
  article-title: Ocean heat transport
  doi: 10.1016/S0074-6142(01)80134-0
– volume: 32
  start-page: 251
  year: 2019a
  ident: ref731
  article-title: Ocean–atmosphere dynamical coupling fundamental to the Atlantic multidecadal oscillation
  publication-title: J. Climate
  doi: 10.1175/JCLI-D-18-0269.1
– volume: 44
  start-page: 7865
  year: 2017
  ident: ref801
  article-title: On the persistence and coherence of subpolar sea surface temperature and salinity anomalies associated with the Atlantic multidecadal variability
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2017GL074342
– volume: 23
  start-page: 357
  year: 1985
  ident: ref1081
  article-title: Sea surface temperature anomalies, planetary waves, and air–sea feedback in the middle latitudes
  publication-title: Rev. Geophys.
  doi: 10.1029/RG023i004p00357
– volume: 13
  start-page: 167
  year: 1997
  ident: ref341
  article-title: Can local linear stochastic theory explain sea surface temperature and salinity variability?
  publication-title: Climate Dyn.
  doi: 10.1007/s003820050158
– volume: 29
  start-page: 439
  year: 2016
  ident: ref371
  article-title: Estimates of air–sea feedbacks on sea surface temperature anomalies in the Southern Ocean
  publication-title: J. Climate
  doi: 10.1175/JCLI-D-15-0015.1
– volume: 14
  start-page: 231
  year: 1984
  ident: ref711
  article-title: Meridional heat transport in the Pacific Ocean
  publication-title: J. Phys. Oceanogr.
  doi: 10.1175/1520-0485(1984)014<0231:MHTITP>2.0.CO;2
– volume: 29
  start-page: 4399
  year: 2016
  ident: ref1381
  article-title: The Pacific decadal oscillation, revisited
  publication-title: J. Climate
  doi: 10.1175/JCLI-D-15-0508.1
– volume: 20
  start-page: 5473
  year: 2007
  ident: ref631
  article-title: Daily high-resolution-blended analyses for sea surface temperature
  publication-title: J. Climate
  doi: 10.1175/2007JCLI1824.1
– volume: 33
  start-page: 577
  year: 2020
  ident: ref691
  article-title: What drives upper-ocean temperature variability in coupled climate models and observations?
  publication-title: J. Climate
  doi: 10.1175/JCLI-D-19-0295.1
– volume: 535
  start-page: 533
  year: 2016
  ident: ref471
  article-title: Western boundary currents regulated by interaction between ocean eddies and the atmosphere
  publication-title: Nature
  doi: 10.1038/nature18640
– volume: 29
  start-page: 4399
  year: 2016
  ident: ref551
  article-title: The Pacific decadal oscillation, revisited
  publication-title: J. Climate
  doi: 10.1175/JCLI-D-15-0508.1
– volume: 9
  start-page: 2424
  year: 1996
  ident: ref11
  article-title: Variability in a mixed layer ocean model driven by stochastic atmospheric forcing
  publication-title: J. Climate
  doi: 10.1175/1520-0442(1996)009<2424:VIAMLO>2.0.CO;2
– volume: 22
  start-page: 859
  year: 1992a
  ident: ref971
  article-title: Latent and sensible heat flux anomalies over the northern oceans: Driving the sea surface temperature
  publication-title: J. Phys. Oceanogr.
  doi: 10.1175/1520-0485(1992)022<0859:LASHFA>2.0.CO;2
– volume: 27
  start-page: 4996
  year: 2014
  ident: ref111
  article-title: Low-frequency SST and upper-ocean heat content variability in the North Atlantic
  publication-title: J. Climate
  doi: 10.1175/JCLI-D-13-00316.1
– volume: 23
  start-page: 3249
  year: 2010
  ident: ref1281
  article-title: Role of the Gulf Stream and Kuroshio–Oyashio systems in large-scale atmosphere–ocean interaction: A review
  publication-title: J. Climate
  doi: 10.1175/2010JCLI3343.1
– volume: 13
  start-page: 3361
  year: 2000
  ident: ref721
  article-title: Signatures of air–sea interactions in a coupled atmosphere–ocean GCM
  publication-title: J. Climate
  doi: 10.1175/1520-0442(2000)013<3361:SOASII>2.0.CO;2
– volume: 29A
  start-page: 339
  year: 1982
  ident: ref1181
  article-title: Direct estimates and mechanisms of ocean heat transport
  publication-title: Deep-Sea Res.
  doi: 10.1016/0198-0149(82)90099-1
– volume: 17
  start-page: 3109
  year: 2004
  ident: ref211
  article-title: Pacific interdecadal climate variability: Linkages between the tropics and the North Pacific during boreal winter since 1900
  publication-title: J. Climate
  doi: 10.1175/1520-0442(2004)017<3109:PICVLB>2.0.CO;2
– volume: 13
  start-page: 3361
  year: 2000
  ident: ref1551
  article-title: Signatures of air–sea interactions in a coupled atmosphere–ocean GCM
  publication-title: J. Climate
  doi: 10.1175/1520-0442(2000)013<3361:SOASII>2.0.CO;2
– volume: 43
  start-page: 2810
  year: 2016
  ident: ref561
  article-title: The signature of low-frequency oceanic forcing in the Atlantic multidecadal oscillation
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2016GL067925
– volume: 56
  start-page: 2093
  year: 2020
  ident: ref51
  article-title: Air–sea interaction over the Gulf Stream in an ensemble of HighResMIP present climate simulations
  publication-title: Climate Dyn.
  doi: 10.1007/s00382-020-05573-z
– volume: 18
  start-page: 4582
  year: 2005
  ident: ref1401
  article-title: Estimation of the surface heat flux response to sea surface temperature anomalies over the global oceans
  publication-title: J. Climate
  doi: 10.1175/JCLI3521.1
– volume: 44
  start-page: 2472
  year: 2017
  ident: ref1341
  article-title: The role of historical forcings in simulating the observed Atlantic multidecadal oscillation
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2016GL071337
– volume: 25
  start-page: 3053
  year: 2012
  ident: ref71
  article-title: Climate sensitivity of the Community Climate System Model, version 4
  publication-title: J. Climate
  doi: 10.1175/JCLI-D-11-00290.1
– volume: 34
  start-page: 4835
  year: 2021
  ident: ref1351
  article-title: Investigating the roles of external forcing and ocean circulation on the Atlantic multidecadal SST variability in a large ensemble climate model hierarchy
  publication-title: J. Climate
  doi: 10.1175/JCLI-D-20-0167.1
– volume: 17
  start-page: 3109
  year: 2004
  ident: ref1041
  article-title: Pacific interdecadal climate variability: Linkages between the tropics and the North Pacific during boreal winter since 1900
  publication-title: J. Climate
  doi: 10.1175/1520-0442(2004)017<3109:PICVLB>2.0.CO;2
– volume: 6
  start-page: 608
  year: 2013
  ident: ref1141
  article-title: Imprint of Southern Ocean eddies on winds, clouds and rainfall
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo1863
– volume: 15
  start-page: 2205
  year: 2002
  ident: ref851
  article-title: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans
  publication-title: J. Climate
  doi: 10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2
– volume: 16
  start-page: 3853
  year: 2003
  ident: ref1371
  article-title: ENSO-forced variability of the Pacific decadal oscillation
  publication-title: J. Climate
  doi: 10.1175/1520-0442(2003)016<3853:EVOTPD>2.0.CO;2
– volume: 94
  start-page: 1339
  year: 2013
  ident: ref381
  article-title: The Community Earth System Model: A framework for collaborative research
  publication-title: Bull. Amer. Meteor. Soc.
  doi: 10.1175/BAMS-D-12-00121.1
– volume: 19
  start-page: 633
  year: 2002
  ident: ref281
  article-title: The surface heat flux feedback. Part I: Estimates from observations in the Atlantic and the North Pacific
  publication-title: Climate Dyn.
  doi: 10.1007/s00382-002-0252-x
– volume: 46
  start-page: 1690
  year: 2019b
  ident: ref741
  article-title: Ocean circulation signatures of North Pacific decadal variability
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2018GL080716
– volume: 45
  start-page: 274
  year: 2008
  ident: ref1501
  article-title: Air–sea interaction over ocean fronts and eddies
  publication-title: Dyn. Atmos. Oceans
  doi: 10.1016/j.dynatmoce.2008.01.001
– volume: 14
  start-page: 1399
  year: 2001
  ident: ref481
  article-title: A study of the interaction of the North Atlantic Oscillation with ocean circulation
  publication-title: J. Climate
  doi: 10.1175/1520-0442(2001)014<1399:ASOTIO>2.0.CO;2
– volume: 29
  start-page: 289
  year: 1977
  ident: ref1091
  article-title: Stochastic climate models, Part II: Application to sea-surface temperature anomalies and thermocline variability
  publication-title: Tellus
  doi: 10.3402/tellusa.v29i4.11362
– volume: 19
  start-page: 4914
  year: 2006
  ident: ref751
  article-title: Local air–sea relationship in observations and model simulations
  publication-title: J. Climate
  doi: 10.1175/JCLI3904.1
– volume: 16
  start-page: 57
  year: 2003
  ident: ref1031
  article-title: Understanding the persistence of sea surface temperature anomalies in midlatitudes
  publication-title: J. Climate
  doi: 10.1175/1520-0442(2003)016<0057:UTPOSS>2.0.CO;2
– volume: 20
  start-page: 2416
  year: 2007
  ident: ref1271
  article-title: North Pacific decadal variability in the Community Climate System Model version 2
  publication-title: J. Climate
  doi: 10.1175/JCLI4103.1
– volume: 30
  start-page: 8207
  year: 2017
  ident: ref61
  article-title: Scale dependence of midlatitude air–sea interaction
  publication-title: J. Climate
  doi: 10.1175/JCLI-D-17-0159.1
– volume: 45
  start-page: 4319
  year: 2018
  ident: ref771
  article-title: Underestimated AMOC variability and implications for AMV and predictability in CMIP models
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2018GL077378
– volume: 5
  start-page: 17785
  year: 2015
  ident: ref461
  article-title: Distant influence of Kuroshio eddies on North Pacific weather patterns?
  publication-title: Sci. Rep.
  doi: 10.1038/srep17785
– volume: 27
  start-page: 4996
  year: 2014
  ident: ref941
  article-title: Low-frequency SST and upper-ocean heat content variability in the North Atlantic
  publication-title: J. Climate
  doi: 10.1175/JCLI-D-13-00316.1
– volume: 16
  start-page: 57
  year: 2003
  ident: ref201
  article-title: Understanding the persistence of sea surface temperature anomalies in midlatitudes
  publication-title: J. Climate
  doi: 10.1175/1520-0442(2003)016<0057:UTPOSS>2.0.CO;2
– volume: 30
  start-page: 5419
  year: 2017
  ident: ref321
  article-title: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2)
  publication-title: J. Climate
  doi: 10.1175/JCLI-D-16-0758.1
– volume: 25
  start-page: 92
  year: 1995
  ident: ref431
  article-title: A simple atmospheric model of surface heat flux for use in ocean modeling studies
  publication-title: J. Phys. Oceanogr.
  doi: 10.1175/1520-0485(1995)025<0092:ASAMOS>2.0.CO;2
– volume: 16
  start-page: 1364
  year: 2003
  ident: ref1011
  article-title: The persistence of winter sea surface temperature in the North Atlantic
  publication-title: J. Climate
  doi: 10.1175/1520-0442-16.9.1364
– volume: 314
  start-page: 1740
  year: 2006
  ident: ref491
  article-title: ENSO as an integrating concept in Earth science
  publication-title: Science
  doi: 10.1126/science.1132588
– volume: 94
  start-page: 1339
  year: 2013
  ident: ref1211
  article-title: The Community Earth System Model: A framework for collaborative research
  publication-title: Bull. Amer. Meteor. Soc.
  doi: 10.1175/BAMS-D-12-00121.1
– volume: 45
  start-page: 4319
  year: 2018
  ident: ref1601
  article-title: Underestimated AMOC variability and implications for AMV and predictability in CMIP models
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2018GL077378
– volume: 45
  start-page: 13
  year: 2018
  ident: ref411
  article-title: Key role of internal ocean dynamics in Atlantic multidecadal variability during the last half century
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2018GL080474
– volume: 19
  start-page: 649
  year: 2002
  ident: ref301
  article-title: The surface heat flux feedback. Part II: Direct and indirect estimates in the ECHAM4/OPA8 coupled GCM
  publication-title: Climate Dyn.
  doi: 10.1007/s00382-002-0253-9
– volume: 34
  start-page: 2567
  year: 2021
  ident: ref581
  article-title: Quantifying the role of ocean dynamics in ocean mixed-layer temperature variability
  publication-title: J. Climate
  doi: 10.1175/JCLI-D-20-0476.1
– volume: 34
  start-page: 4835
  year: 2021
  ident: ref521
  article-title: Investigating the roles of external forcing and ocean circulation on the Atlantic multidecadal SST variability in a large ensemble climate model hierarchy
  publication-title: J. Climate
  doi: 10.1175/JCLI-D-20-0167.1
– volume: 19
  start-page: 649
  year: 2002
  ident: ref1131
  article-title: The surface heat flux feedback. Part II: Direct and indirect estimates in the ECHAM4/OPA8 coupled GCM
  publication-title: Climate Dyn.
  doi: 10.1007/s00382-002-0253-9
– volume: 29
  start-page: 439
  year: 2016
  ident: ref1201
  article-title: Estimates of air–sea feedbacks on sea surface temperature anomalies in the Southern Ocean
  publication-title: J. Climate
  doi: 10.1175/JCLI-D-15-0015.1
– volume: 13
  start-page: 1131
  year: 1983
  ident: ref1101
  article-title: Testing a dynamical model for mid-latitude sea surface temperature anomalies
  publication-title: J. Phys. Oceanogr.
  doi: 10.1175/1520-0485(1983)013<1131:TADMFM>2.0.CO;2
– volume: 499
  start-page: 464
  year: 2013
  ident: ref1161
  article-title: North Atlantic Ocean control on surface heat flux on multidecadal timescales
  publication-title: Nature
  doi: 10.1038/nature12268
– volume: 30
  start-page: 7529
  year: 2017
  ident: ref131
  article-title: Low-pass filtering, heat flux, and Atlantic multidecadal variability
  publication-title: J. Climate
  doi: 10.1175/JCLI-D-16-0810.1
– volume: 5
  start-page: 354
  year: 1992b
  ident: ref151
  article-title: Latent and sensible heat flux anomalies over the northern oceans: The connection to monthly atmospheric circulation
  publication-title: J. Climate
  doi: 10.1175/1520-0442(1992)005<0354:LASHFA>2.0.CO;2
– volume: 30
  start-page: 3789
  year: 2017
  ident: ref191
  article-title: The central role of ocean dynamics in connecting the North Atlantic Oscillation to the extratropical component of the Atlantic multidecadal oscillation
  publication-title: J. Climate
  doi: 10.1175/JCLI-D-16-0358.1
– volume: 2
  start-page: 115
  year: 2010
  ident: ref221
  article-title: Sea surface temperature variability: Patterns and mechanisms
  publication-title: Annu. Rev. Mar. Sci.
  doi: 10.1146/annurev-marine-120408-151453
– volume: 32
  start-page: 2397
  year: 2019
  ident: ref1511
  article-title: Air–sea turbulent heat fluxes in climate models and observational analyses: What drives their variability?
  publication-title: J. Climate
  doi: 10.1175/JCLI-D-18-0576.1
– volume: 20
  start-page: 3602
  year: 2007
  ident: ref611
  article-title: Coupled decadal variability in the North Pacific: An observationally constrained idealized model
  publication-title: J. Climate
  doi: 10.1175/JCLI4190.1
– volume: 18
  start-page: 4582
  year: 2005
  ident: ref571
  article-title: Estimation of the surface heat flux response to sea surface temperature anomalies over the global oceans
  publication-title: J. Climate
  doi: 10.1175/JCLI3521.1
– volume: 16
  start-page: 3853
  year: 2003
  ident: ref541
  article-title: ENSO-forced variability of the Pacific decadal oscillation
  publication-title: J. Climate
  doi: 10.1175/1520-0442(2003)016<3853:EVOTPD>2.0.CO;2
– volume: 25
  start-page: 3053
  year: 2012
  ident: ref901
  article-title: Climate sensitivity of the Community Climate System Model, version 4
  publication-title: J. Climate
  doi: 10.1175/JCLI-D-11-00290.1
– volume: 3
  start-page: 465
  year: 1979
  ident: ref231
  article-title: Stochastic forcing models of climate variability
  publication-title: Dyn. Atmos. Oceans
  doi: 10.1016/0377-0265(79)90025-3
– volume: 3
  start-page: 465
  year: 1979
  ident: ref1061
  article-title: Stochastic forcing models of climate variability
  publication-title: Dyn. Atmos. Oceans
  doi: 10.1016/0377-0265(79)90025-3
– volume: 29A
  start-page: 339
  year: 1982
  ident: ref351
  article-title: Direct estimates and mechanisms of ocean heat transport
  publication-title: Deep-Sea Res.
  doi: 10.1016/0198-0149(82)90099-1
– volume: 46
  start-page: 1690
  year: 2019b
  ident: ref1571
  article-title: Ocean circulation signatures of North Pacific decadal variability
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2018GL080716
– volume: 314
  start-page: 1740
  year: 2006
  ident: ref1321
  article-title: ENSO as an integrating concept in Earth science
  publication-title: Science
  doi: 10.1126/science.1132588
– volume: 43
  start-page: 3964
  year: 2016
  ident: ref1491
  article-title: Atlantic near-term climate variability and the role of a resolved Gulf Stream
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2016GL068694
– volume: 54
  start-page: 811
  year: 1997
  ident: ref391
  article-title: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2
– volume: 9
  start-page: 2424
  year: 1996
  ident: ref841
  article-title: Variability in a mixed layer ocean model driven by stochastic atmospheric forcing
  publication-title: J. Climate
  doi: 10.1175/1520-0442(1996)009<2424:VIAMLO>2.0.CO;2
– volume: 14
  start-page: 231
  year: 1984
  ident: ref1541
  article-title: Meridional heat transport in the Pacific Ocean
  publication-title: J. Phys. Oceanogr.
  doi: 10.1175/1520-0485(1984)014<0231:MHTITP>2.0.CO;2
– volume: 44
  start-page: 6352
  year: 2017
  ident: ref1431
  article-title: Importance of ocean mesoscale variability for air–sea interactions in the Gulf of Mexico
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2017GL072884
– volume: 86
  start-page: 6522
  year: 1981
  ident: ref1071
  article-title: Low-frequency temperature fluctuations off Bermuda
  publication-title: J. Geophys. Res.
  doi: 10.1029/JC086iC07p06522
– volume: 54
  start-page: 5
  year: 2016
  ident: ref931
  article-title: Observations, inferences, and mechanisms of the Atlantic Meridional Overturning Circulation: A review
  publication-title: Rev. Geophys.
  doi: 10.1002/2015RG000493
– volume: 122
  start-page: 726
  year: 2017
  ident: ref1471
  article-title: Surface flux and ocean heat transport convergence contributions to seasonal and interannual variations of ocean heat content
  publication-title: J. Geophys. Res. Oceans
  doi: 10.1002/2016JC012278
– volume: 33
  start-page: 3511
  year: 2020
  ident: ref1591
  article-title: On the emergence of the Atlantic multidecadal SST signal: A key role of the mixed layer depth variability driven by North Atlantic Oscillation
  publication-title: J. Climate
  doi: 10.1175/JCLI-D-19-0283.1
– volume: 28
  start-page: 3943
  year: 2015
  ident: ref121
  article-title: Determining the origins of advective heat transport convergence variability in the North Atlantic
  publication-title: J. Climate
  doi: 10.1175/JCLI-D-14-00579.1
– volume: 499
  start-page: 464
  year: 2013
  ident: ref331
  article-title: North Atlantic Ocean control on surface heat flux on multidecadal timescales
  publication-title: Nature
  doi: 10.1038/nature12268
– volume: 44
  start-page: 2472
  year: 2017
  ident: ref511
  article-title: The role of historical forcings in simulating the observed Atlantic multidecadal oscillation
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2016GL071337
– volume: 56
  start-page: 2093
  year: 2020
  ident: ref881
  article-title: Air–sea interaction over the Gulf Stream in an ensemble of HighResMIP present climate simulations
  publication-title: Climate Dyn.
  doi: 10.1007/s00382-020-05573-z
– volume: 27
  start-page: 592
  year: 2014
  ident: ref1531
  article-title: Investigating the role of ocean–atmosphere coupling in the North Pacific Ocean
  publication-title: J. Climate
  doi: 10.1175/JCLI-D-13-00123.1
– volume: 57
  start-page: 316
  year: 2019
  ident: ref1641
  article-title: A review of the role of the Atlantic Meridional Overturning Circulation in Atlantic multidecadal variability and associated climate impacts
  publication-title: Rev. Geophys.
  doi: 10.1029/2019RG000644
– volume: 11
  start-page: 2310
  year: 1998
  ident: ref291
  article-title: Air–sea feedback in the North Atlantic and surface boundary conditions for ocean models
  publication-title: J. Climate
  doi: 10.1175/1520-0442(1998)011<2310:ASFITN>2.0.CO;2
– volume: 50
  start-page: 3687
  year: 2018
  ident: ref41
  article-title: Historical forcings as main drivers of the Atlantic multidecadal variability in the CESM large ensemble
  publication-title: Climate Dyn.
  doi: 10.1007/s00382-017-3834-3
– volume: 22
  start-page: 859
  year: 1992a
  ident: ref141
  article-title: Latent and sensible heat flux anomalies over the northern oceans: Driving the sea surface temperature
  publication-title: J. Phys. Oceanogr.
  doi: 10.1175/1520-0485(1992)022<0859:LASHFA>2.0.CO;2
– volume: Vol. 77
  start-page: 455
  volume-title: Ocean Circulation and Climate: Observing and Modelling the Global Ocean
  year: 2001
  ident: ref91
  article-title: Ocean heat transport
  doi: 10.1016/S0074-6142(01)80134-0
– volume: 43
  start-page: 2810
  year: 2016
  ident: ref1391
  article-title: The signature of low-frequency oceanic forcing in the Atlantic multidecadal oscillation
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2016GL067925
– volume: 25
  start-page: 92
  year: 1995
  ident: ref1261
  article-title: A simple atmospheric model of surface heat flux for use in ocean modeling studies
  publication-title: J. Phys. Oceanogr.
  doi: 10.1175/1520-0485(1995)025<0092:ASAMOS>2.0.CO;2
– volume: 27
  start-page: 592
  year: 2014
  ident: ref701
  article-title: Investigating the role of ocean–atmosphere coupling in the North Pacific Ocean
  publication-title: J. Climate
  doi: 10.1175/JCLI-D-13-00123.1
– volume: 15
  start-page: 2205
  year: 2002
  ident: ref21
  article-title: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans
  publication-title: J. Climate
  doi: 10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2
– volume: Vol. 189
  start-page: 123
  volume-title: Climate Dynamics: Why Does Climate Vary? Geophys. Monogr.
  year: 2010
  ident: ref831
  article-title: Extratropical air–sea interaction, sea surface temperature variability, and the Pacific decadal oscillation
  doi: 10.1029/2008GM000794
– volume: 30
  start-page: 97
  year: 1978
  ident: ref1451
  article-title: Sea surface temperature anomalies in the North Pacific Ocean
  publication-title: Tellus
  doi: 10.3402/tellusa.v30i2.10321
– volume: 39
  start-page: 1303
  year: 2012
  ident: ref1251
  article-title: Impact of ocean model resolution on CCSM climate simulations
  publication-title: Climate Dyn.
  doi: 10.1007/s00382-012-1500-3
– volume: Vol. 189
  start-page: 123
  volume-title: Climate Dynamics: Why Does Climate Vary? Geophys. Monogr.
  year: 2010
  ident: ref01
  article-title: Extratropical air–sea interaction, sea surface temperature variability, and the Pacific decadal oscillation
  doi: 10.1029/2008GM000794
– volume: 33
  start-page: 3511
  year: 2020
  ident: ref761
  article-title: On the emergence of the Atlantic multidecadal SST signal: A key role of the mixed layer depth variability driven by North Atlantic Oscillation
  publication-title: J. Climate
  doi: 10.1175/JCLI-D-19-0283.1
– volume: 30
  start-page: 5419
  year: 2017
  ident: ref1151
  article-title: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2)
  publication-title: J. Climate
  doi: 10.1175/JCLI-D-16-0758.1
– volume: 28
  start-page: 473
  year: 1976
  ident: ref1191
  article-title: Stochastic climate models part I. Theory
  publication-title: Tellus
  doi: 10.3402/tellusa.v28i6.11316
– volume: 28
  start-page: 473
  year: 1976
  ident: ref361
  article-title: Stochastic climate models part I. Theory
  publication-title: Tellus
  doi: 10.3402/tellusa.v28i6.11316
– volume: 535
  start-page: 533
  year: 2016
  ident: ref1301
  article-title: Western boundary currents regulated by interaction between ocean eddies and the atmosphere
  publication-title: Nature
  doi: 10.1038/nature18640
– volume: 44
  start-page: 7865
  year: 2017
  ident: ref1631
  article-title: On the persistence and coherence of subpolar sea surface temperature and salinity anomalies associated with the Atlantic multidecadal variability
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2017GL074342
– volume: 20
  start-page: 5473
  year: 2007
  ident: ref1461
  article-title: Daily high-resolution-blended analyses for sea surface temperature
  publication-title: J. Climate
  doi: 10.1175/2007JCLI1824.1
– volume: 14
  start-page: 1399
  year: 2001
  ident: ref1311
  article-title: A study of the interaction of the North Atlantic Oscillation with ocean circulation
  publication-title: J. Climate
  doi: 10.1175/1520-0442(2001)014<1399:ASOTIO>2.0.CO;2
– start-page: 183
  volume-title: Sub-Seasonal to Seasonal Prediction
  year: 2019
  ident: ref651
  article-title: Midlatitude mesoscale ocean–atmosphere interaction and its relevance to S2S prediction
  doi: 10.1016/B978-0-12-811714-9.00009-7
– volume: 54
  start-page: 5
  year: 2016
  ident: ref101
  article-title: Observations, inferences, and mechanisms of the Atlantic Meridional Overturning Circulation: A review
  publication-title: Rev. Geophys.
  doi: 10.1002/2015RG000493
– volume: 5
  start-page: 354
  year: 1992b
  ident: ref981
  article-title: Latent and sensible heat flux anomalies over the northern oceans: The connection to monthly atmospheric circulation
  publication-title: J. Climate
  doi: 10.1175/1520-0442(1992)005<0354:LASHFA>2.0.CO;2
– volume: 118
  start-page: 5772
  year: 2013
  ident: ref791
  article-title: Multidecadal North Atlantic sea surface temperature and atlantic meridional overturning circulation variability in CMIP5 historical simulations
  publication-title: J. Geophys. Res. Oceans
  doi: 10.1002/jgrc.20390
– volume: Vol. 10
  start-page: 1
  volume-title: Advances in Geophysics
  year: 1964
  ident: ref81
  article-title: Atlantic air–sea interaction
– volume: 50
  start-page: 3687
  year: 2018
  ident: ref871
  article-title: Historical forcings as main drivers of the Atlantic multidecadal variability in the CESM large ensemble
  publication-title: Climate Dyn.
  doi: 10.1007/s00382-017-3834-3
– volume: 57
  start-page: 316
  year: 2019
  ident: ref811
  article-title: A review of the role of the Atlantic Meridional Overturning Circulation in Atlantic multidecadal variability and associated climate impacts
  publication-title: Rev. Geophys.
  doi: 10.1029/2019RG000644
– volume: 302
  start-page: 295
  year: 1983
  ident: ref1421
  article-title: El Niño Southern Oscillation phenomena
  publication-title: Nature
  doi: 10.1038/302295a0
– volume: 15
  start-page: 779
  year: 2019
  ident: ref1651
  article-title: The ECMWF operational ensemble reanalysis–analysis system for ocean and sea ice: A description of the system and assessment
  publication-title: Ocean Sci.
  doi: 10.5194/os-15-779-2019
– volume: 20
  start-page: 555
  year: 2003
  ident: ref1331
  article-title: On the interannual variability of surface salinity in the Atlantic
  publication-title: Climate Dyn.
  doi: 10.1007/s00382-002-0294-0
– volume: 20
  start-page: 3602
  year: 2007
  ident: ref1441
  article-title: Coupled decadal variability in the North Pacific: An observationally constrained idealized model
  publication-title: J. Climate
  doi: 10.1175/JCLI4190.1
– volume: 13
  start-page: 167
  year: 1997
  ident: ref1171
  article-title: Can local linear stochastic theory explain sea surface temperature and salinity variability?
  publication-title: Climate Dyn.
  doi: 10.1007/s003820050158
SSID ssj0012600
Score 2.4810994
Snippet In a recent paper, we argued that ocean dynamics increase the variability of midlatitude sea surface temperatures (SSTs) on monthly to interannual time scales,...
SourceID proquest
crossref
jstor
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3313
SubjectTerms Active damping
Atmospheric models
Boundary currents
Climate
Climate models
Climate variability
Configurations
Damping
Dynamics
Energy spectra
Heat flux
Heat transfer
Modelling
Ocean currents
Ocean dynamics
Ocean models
Oceans
Power spectra
Sea surface
Sea surface temperature
Sea surface temperature variability
Spectra
Surface temperature
Temperature variability
Time
Variability
Western boundary currents
Title Understanding the Role of Ocean Dynamics in Midlatitude Sea Surface Temperature Variability Using a Simple Stochastic Climate Model
URI https://www.jstor.org/stable/27245820
https://www.proquest.com/docview/2675717665
Volume 35
WOSCitedRecordID wos000799290500009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1520-0442
  dateEnd: 20231209
  omitProxy: false
  ssIdentifier: ssj0012600
  issn: 0894-8755
  databaseCode: P5Z
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Agricultural Science Database
  customDbUrl:
  eissn: 1520-0442
  dateEnd: 20231209
  omitProxy: false
  ssIdentifier: ssj0012600
  issn: 0894-8755
  databaseCode: M0K
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1520-0442
  dateEnd: 20231209
  omitProxy: false
  ssIdentifier: ssj0012600
  issn: 0894-8755
  databaseCode: PCBAR
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1520-0442
  dateEnd: 20231209
  omitProxy: false
  ssIdentifier: ssj0012600
  issn: 0894-8755
  databaseCode: PATMY
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Military Database
  customDbUrl:
  eissn: 1520-0442
  dateEnd: 20231209
  omitProxy: false
  ssIdentifier: ssj0012600
  issn: 0894-8755
  databaseCode: M1Q
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/military
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1520-0442
  dateEnd: 20231209
  omitProxy: false
  ssIdentifier: ssj0012600
  issn: 0894-8755
  databaseCode: BENPR
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1520-0442
  dateEnd: 20231209
  omitProxy: false
  ssIdentifier: ssj0012600
  issn: 0894-8755
  databaseCode: M2O
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1520-0442
  dateEnd: 20231209
  omitProxy: false
  ssIdentifier: ssj0012600
  issn: 0894-8755
  databaseCode: M2P
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfKxoEL4muiMCofEBKq0jlO7CRHWIdgrF2ZujFxiRzH0SKVdOq6aXDlL-E_5fkjabtqiB24WG30mqZ9P78Pv-efEXpNhGA-F4WXQbzshVLAnCv0cS9B4mcJuGjfnKJwchANh_HpaTJqtX7Xe2GuJlFVxdfXyfl_VTVcA2XrrbN3UHdzU7gAr0HpMILaYfwnxR-vbFfRceWR6yA8lHrZvW_PoDd9sIMyN1tZLnMFVkOAGZkVAmb6WEE0bdmWuyeQTVsy7x9d22AAcuV324Q4lWdCMz13dyclxL7KnK02uSXilVZmUbWaz8qfpV2rBWcK2UBvvU_Ftd13v_a6-73lNQpIb5teqtqUJSHYXUvI21PO1FLdWBqu2GJLXVJjzl-yrEFg96w6Lx0Elj9j3QNEmixjf_fgk9f3qF4qicOev_B2dYX_hhNsWhNNUhSxVN8h7afUT_UdUkiwN2nEEt01OGLfmkKV5vc3iYr7gU0lnO3cfIaVyMc2v64FACaqGT9CD51y8DsLo8eopaonqD2ATGo6MwUX_AZb1Zp3T9GvFXhhgBfW8MLTAht44RpeuKzwErwwwAs7eOEleOEleGEDLwxyBl54AS_3DAobeD1Dxx_2xrsfPXeQhychmpx7YVTkMiMZYYUMJaVEgYXgWQGxtGJckkxyVihRcBnlMU_yRGmWXh7znBHpszzYQhvVtFLPEeZMCBIrHoIlgWQdRH2SMaYiIQmnmWqjnfpPTqVjudeHrUzS2xTbRm-bT5xbhpe_yG4ZvTWCNKK68EzaaLtWZOpswUVKIRmPNAEre3GH73iJHiym0DbamM8u1St0X17Ny4tZB22-3xuOjjro3oB81qP_RY_00IyjjkHnH4xetQo
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Understanding+the+Role+of+Ocean+Dynamics+in+Midlatitude+Sea+Surface+Temperature+Variability+Using+a+Simple+Stochastic+Climate+Model&rft.jtitle=Journal+of+climate&rft.au=Patrizio%2C+Casey+R.&rft.au=Thompson%2C+David+W.+J.&rft.date=2022-06-01&rft.issn=0894-8755&rft.eissn=1520-0442&rft.volume=35&rft.issue=11&rft.spage=3313&rft.epage=3333&rft_id=info:doi/10.1175%2FJCLI-D-21-0184.1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1175_JCLI_D_21_0184_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0894-8755&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0894-8755&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0894-8755&client=summon