An Ultra-Low-Power Dual-Mode Automatic Sleep Staging Processor Using Neural-Network-Based Decision Tree

This paper presents an ultra-low-power dual-mode automatic sleep staging processor design using a neural-network (NN)-based decision tree classifier to enable real-time, longterm, and flexible sleep monitoring. The ultra-low-power feature is achieved by an algorithm-hardware co-design approach that...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on circuits and systems. I, Regular papers Ročník 66; číslo 9; s. 3504 - 3516
Hlavní autori: Chang, Shang-Yuan, Wu, Bing-Chen, Liou, Yi-Long, Zheng, Rui-Xuan, Lee, Pei-Lin, Chiueh, Tzi-Dar, Liu, Tsung-Te
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.09.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1549-8328, 1558-0806
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This paper presents an ultra-low-power dual-mode automatic sleep staging processor design using a neural-network (NN)-based decision tree classifier to enable real-time, longterm, and flexible sleep monitoring. The ultra-low-power feature is achieved by an algorithm-hardware co-design approach that jointly considers optimization opportunities across the algorithm, architecture, and circuit levels to minimize power consumption; consequently, the first sub-10-μW NN-based automatic sleep staging processor is realized. The dual-mode NN models are trained by an open-source large-scale dataset. The default mode achieves 81.0% classification accuracy based on two signals of one electroencephalography (EEG) signal and one electromyography (EMG) signal, and the compact mode achieves 78.5% accuracy based on only one EEG signal. In addition, the proposed design was verified using the National Taiwan University Hospital (NTUH) dataset, for which 81.1% and 77.1% accuracy is achieved in the default and the compact modes, respectively. A prototype chip using a 180-nm CMOS process occupies a total area of 11.74 mm 2 and operates at 10 KHz while consuming 4.96 μW at 1.2 V.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1549-8328
1558-0806
DOI:10.1109/TCSI.2019.2927839