Ensemble of Metaheuristic and Exact Algorithm Based on the Divide-and-Conquer Framework for Multisatellite Observation Scheduling

Satellite observation scheduling plays a significant role in improving the efficiency of Earth observation systems. To solve the large-scale multisatellite observation scheduling problem, this article proposes an ensemble of metaheuristic and exact algorithms based on a divide-and-conquer framework...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on aerospace and electronic systems Vol. 58; no. 5; pp. 4396 - 4408
Main Authors: Wu, Guohua, Luo, Qizhang, Du, Xiao, Chen, Yingguo, Suganthan, Ponnuthurai Nagaratnam, Wang, Xinwei
Format: Journal Article
Language:English
Published: New York IEEE 01.10.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0018-9251, 1557-9603
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Satellite observation scheduling plays a significant role in improving the efficiency of Earth observation systems. To solve the large-scale multisatellite observation scheduling problem, this article proposes an ensemble of metaheuristic and exact algorithms based on a divide-and-conquer framework (EHE-DCF), including a task allocation phase and a task scheduling phase. In the task allocation phase, each task is allocated to a proper orbit based on a metaheuristic incorporated with a probabilistic selection and a tabu mechanism derived from ant colony optimization and tabu search, respectively. In the task scheduling phase, we construct a task scheduling model for every single orbit and solve the model by using an exact method (i.e., branch and bound, B&B). The task allocation and task scheduling phases are performed iteratively to obtain a promising solution. To validate the performance of the EHE-DCF, we compare it with B&B, three divide-and-conquer-based metaheuristics, and a state-of-the-art metaheuristic. Experimental results show that the EHE-DCF can obtain higher scheduling profits and complete more tasks compared with existing algorithms. The EHE-DCF is especially efficient for large-scale satellite observation scheduling problems.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9251
1557-9603
DOI:10.1109/TAES.2022.3160993