Ensemble of Metaheuristic and Exact Algorithm Based on the Divide-and-Conquer Framework for Multisatellite Observation Scheduling
Satellite observation scheduling plays a significant role in improving the efficiency of Earth observation systems. To solve the large-scale multisatellite observation scheduling problem, this article proposes an ensemble of metaheuristic and exact algorithms based on a divide-and-conquer framework...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on aerospace and electronic systems Jg. 58; H. 5; S. 4396 - 4408 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.10.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 0018-9251, 1557-9603 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Satellite observation scheduling plays a significant role in improving the efficiency of Earth observation systems. To solve the large-scale multisatellite observation scheduling problem, this article proposes an ensemble of metaheuristic and exact algorithms based on a divide-and-conquer framework (EHE-DCF), including a task allocation phase and a task scheduling phase. In the task allocation phase, each task is allocated to a proper orbit based on a metaheuristic incorporated with a probabilistic selection and a tabu mechanism derived from ant colony optimization and tabu search, respectively. In the task scheduling phase, we construct a task scheduling model for every single orbit and solve the model by using an exact method (i.e., branch and bound, B&B). The task allocation and task scheduling phases are performed iteratively to obtain a promising solution. To validate the performance of the EHE-DCF, we compare it with B&B, three divide-and-conquer-based metaheuristics, and a state-of-the-art metaheuristic. Experimental results show that the EHE-DCF can obtain higher scheduling profits and complete more tasks compared with existing algorithms. The EHE-DCF is especially efficient for large-scale satellite observation scheduling problems. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0018-9251 1557-9603 |
| DOI: | 10.1109/TAES.2022.3160993 |