Towards Precision Agriculture: IoT-Enabled Intelligent Irrigation Systems Using Deep Learning Neural Network
Recently, precision agriculture has gained substantial attention due to the ever-growing world population demands for food and water. Consequently, farmers will need water and arable land to meet this demand. Due to the limited availability of both resources, farmers need a solution that changes the...
Saved in:
| Published in: | IEEE sensors journal Vol. 21; no. 16; pp. 17479 - 17491 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
15.08.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 1530-437X, 1558-1748 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Recently, precision agriculture has gained substantial attention due to the ever-growing world population demands for food and water. Consequently, farmers will need water and arable land to meet this demand. Due to the limited availability of both resources, farmers need a solution that changes the way they operate. Precision irrigation is the solution to deliver bigger, better, and more profitable yields with fewer resources. Several machine learning-based irrigation models have been proposed to use water more efficiently. Due to the limited learning ability of these models, they are not well suited to unpredictable climates. In this context, this paper proposes a deep learning neural network-based Internet of Things (IoT)-enabled intelligent irrigation system for precision agriculture (DLiSA). This is a feedback integrated system that keeps its functionality better in the weather of any region for any period of time. DLiSA utilizes a long short-term memory network (LSTM) to predict the volumetric soil moisture content for one day ahead, irrigation period, and spatial distribution of water required to feed the arable land. It is evident from the simulation results that DLiSA uses water more wisely than state-of-the-art models in the experimental farming area. |
|---|---|
| AbstractList | Recently, precision agriculture has gained substantial attention due to the ever-growing world population demands for food and water. Consequently, farmers will need water and arable land to meet this demand. Due to the limited availability of both resources, farmers need a solution that changes the way they operate. Precision irrigation is the solution to deliver bigger, better, and more profitable yields with fewer resources. Several machine learning-based irrigation models have been proposed to use water more efficiently. Due to the limited learning ability of these models, they are not well suited to unpredictable climates. In this context, this paper proposes a deep learning neural network-based Internet of Things (IoT)-enabled intelligent irrigation system for precision agriculture (DLiSA). This is a feedback integrated system that keeps its functionality better in the weather of any region for any period of time. DLiSA utilizes a long short-term memory network (LSTM) to predict the volumetric soil moisture content for one day ahead, irrigation period, and spatial distribution of water required to feed the arable land. It is evident from the simulation results that DLiSA uses water more wisely than state-of-the-art models in the experimental farming area. |
| Author | Gandomi, Amir H. Jaiswal, Ankita Prasad, Mukesh Kashyap, Pankaj Kumar Kumar, Sushil |
| Author_xml | – sequence: 1 givenname: Pankaj Kumar orcidid: 0000-0002-6041-9327 surname: Kashyap fullname: Kashyap, Pankaj Kumar email: pankaj76_scs@jnu.ac.in organization: School of Computer and Systems Sciences, Jawaharlal Nehru University, New Delhi, India – sequence: 2 givenname: Sushil orcidid: 0000-0001-9113-2890 surname: Kumar fullname: Kumar, Sushil email: skdohare@mail.jnu.ac.in organization: School of Computer and Systems Sciences, Jawaharlal Nehru University, New Delhi, India – sequence: 3 givenname: Ankita surname: Jaiswal fullname: Jaiswal, Ankita email: ankita79_scs@jnu.ac.in organization: School of Computer and Systems Sciences, Jawaharlal Nehru University, New Delhi, India – sequence: 4 givenname: Mukesh surname: Prasad fullname: Prasad, Mukesh email: mukesh.prasad@uts.edu.au organization: Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, Australia – sequence: 5 givenname: Amir H. orcidid: 0000-0002-2798-0104 surname: Gandomi fullname: Gandomi, Amir H. email: gandomi@uts.edu.au organization: Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, Australia |
| BookMark | eNp9kE1LAzEQhoMo-PkDxMuC562TZLObeBOtWilVaAveljQ7W6JrtiZZiv_eri0ePHh6Z-B9ZuA5JvuudUjIOYUBpaCunqbDyYABowMOuWJ5vkeOqBAypUUm9_uZQ5rx4vWQHIfwBkBVIYoj0szatfZVSF48Ghts65Kbpbema2Ln8ToZtbN06PSiwSoZuYhNY5foYjLy3i517PvTrxDxIyTzYN0yuUNcJWPU3vXbBDuvm03EdevfT8lBrZuAZ7s8IfP74ez2MR0_P4xub8apYYrHlFHDai0Mp5izXHADAqHiXOt6wTIwRa2UlgoM8EUtgTKUouKi1qAQpJL8hFxu7658-9lhiOVb23m3eVkykYOiGWVs06LblvFtCB7rcuXth_ZfJYWyl1r2UstearmTumGKP4yx8UdD9No2_5IXW9Ii4u8nxaXMFeXfLtaHOA |
| CODEN | ISJEAZ |
| CitedBy_id | crossref_primary_10_1007_s11277_022_10016_5 crossref_primary_10_1080_23311916_2022_2100573 crossref_primary_10_3390_agronomy14010047 crossref_primary_10_1109_ACCESS_2024_3390581 crossref_primary_10_3103_S8756699023010156 crossref_primary_10_1016_j_eswa_2023_120194 crossref_primary_10_1109_ACCESS_2022_3143524 crossref_primary_10_3390_en14175217 crossref_primary_10_3390_agriengineering7040106 crossref_primary_10_3390_s23167081 crossref_primary_10_1007_s42979_024_03319_w crossref_primary_10_1109_ACCESS_2023_3315649 crossref_primary_10_3390_su16020475 crossref_primary_10_33693_2313_223X_2024_11_5_20_36 crossref_primary_10_1016_j_iot_2024_101356 crossref_primary_10_3390_s25123583 crossref_primary_10_3390_w15091657 crossref_primary_10_3390_iot6020021 crossref_primary_10_1109_JSEN_2022_3221960 crossref_primary_10_3390_w14071034 crossref_primary_10_1371_journal_pone_0319268 crossref_primary_10_1080_0954898X_2024_2383893 crossref_primary_10_1038_s41598_024_81322_0 crossref_primary_10_1002_agj2_70035 crossref_primary_10_3390_s22103910 crossref_primary_10_1007_s10462_023_10466_8 crossref_primary_10_1109_TNSM_2022_3145056 crossref_primary_10_3390_agronomy11112256 crossref_primary_10_1016_j_rser_2023_113858 crossref_primary_10_1016_j_inffus_2024_102601 crossref_primary_10_1002_spe_3324 crossref_primary_10_1016_j_isci_2024_111407 crossref_primary_10_1109_JSTARS_2023_3345473 crossref_primary_10_3390_s21123942 crossref_primary_10_1007_s11042_024_20418_1 crossref_primary_10_3390_drones9080531 crossref_primary_10_1007_s41976_024_00174_4 crossref_primary_10_1007_s11220_024_00512_2 crossref_primary_10_1080_10406026_2025_2545839 crossref_primary_10_1155_2021_5575802 crossref_primary_10_1007_s42044_025_00269_1 crossref_primary_10_24054_rcta_v2i42_1296 crossref_primary_10_1007_s11004_025_10211_7 crossref_primary_10_1007_s12083_025_01966_1 crossref_primary_10_3390_s24082647 crossref_primary_10_1007_s10489_025_06259_x crossref_primary_10_1109_JSEN_2024_3488278 crossref_primary_10_1109_ACCESS_2024_3482088 crossref_primary_10_69882_adba_chf_2024072 crossref_primary_10_3390_agriculture15111213 crossref_primary_10_1016_j_atech_2025_100935 crossref_primary_10_1016_j_eij_2025_100691 crossref_primary_10_3390_fi16070234 crossref_primary_10_3390_agronomy13020477 crossref_primary_10_1109_JIOT_2024_3363451 crossref_primary_10_7717_peerj_cs_1595 crossref_primary_10_1051_bioconf_202414201004 crossref_primary_10_1371_journal_pone_0317277 crossref_primary_10_32604_cmc_2022_021789 crossref_primary_10_1016_j_biosystemseng_2025_104220 crossref_primary_10_26634_jic_12_1_20362 crossref_primary_10_3390_plants11223118 crossref_primary_10_1007_s40808_022_01452_0 crossref_primary_10_1007_s00217_024_04473_4 crossref_primary_10_3389_frobt_2022_808484 crossref_primary_10_3390_mca29040049 crossref_primary_10_1002_ird_3095 crossref_primary_10_1016_j_heliyon_2025_e42136 crossref_primary_10_1007_s12652_021_03644_5 crossref_primary_10_1038_s41598_024_76915_8 crossref_primary_10_1016_j_agwat_2024_108710 crossref_primary_10_1109_JSEN_2022_3200008 crossref_primary_10_3390_agriculture14071141 crossref_primary_10_1088_2515_7620_acf9f2 crossref_primary_10_1109_ACCESS_2022_3220234 crossref_primary_10_3390_genes13101886 crossref_primary_10_3390_s23229244 crossref_primary_10_1007_s44187_025_00338_1 crossref_primary_10_1016_j_geoderma_2025_117304 crossref_primary_10_1109_ACCESS_2024_3522248 crossref_primary_10_1007_s42979_025_03833_5 crossref_primary_10_1016_j_atech_2025_101008 crossref_primary_10_1016_j_suscom_2025_101112 crossref_primary_10_3390_drones6010003 crossref_primary_10_1007_s42853_023_00192_y crossref_primary_10_1109_TVT_2022_3225524 crossref_primary_10_1007_s42979_024_03159_8 crossref_primary_10_3390_s23042091 crossref_primary_10_3390_agriculture15131351 crossref_primary_10_1109_JSEN_2024_3390681 crossref_primary_10_3390_app13042746 crossref_primary_10_1016_j_agwat_2024_109273 crossref_primary_10_1155_2021_5051863 crossref_primary_10_3390_agronomy14112649 crossref_primary_10_1007_s13042_025_02775_x crossref_primary_10_1007_s13762_023_04955_0 crossref_primary_10_1016_j_adhoc_2024_103752 crossref_primary_10_1109_ACCESS_2025_3573678 crossref_primary_10_1016_j_adhoc_2024_103632 crossref_primary_10_1016_j_compag_2022_107406 crossref_primary_10_1016_j_adhoc_2025_103818 crossref_primary_10_1016_j_suscom_2025_101191 crossref_primary_10_3390_s23073752 crossref_primary_10_3390_agronomy13020342 crossref_primary_10_1007_s40745_024_00534_3 crossref_primary_10_1038_s41598_024_72197_2 |
| Cites_doi | 10.1016/j.envsoft.2014.09.020 10.21273/HORTTECH.21.3.309 10.1109/IOTM.0001.1900046 10.1016/j.compag.2013.12.004 10.5194/hess-16-4079-2012 10.1016/j.jhydrol.2018.04.065 10.1016/j.enbuild.2016.06.005 10.1016/j.jhydrol.2017.11.018 10.5194/hess-22-6005-2018 10.12785/amis/070537 10.1109/SMARTCOMP.2016.7501673 10.1016/j.compag.2016.04.003 10.1109/CIFEr.2012.6327793 10.3390/pr5030046 10.1016/j.agwat.2014.10.022 10.1007/s00271-011-0313-1 10.1109/TIA.2018.2871392 10.1109/PowerAfrica.2018.8521025 10.1016/j.jhydrol.2016.11.007 10.1007/s40010-017-0401-6 10.1016/j.envsoft.2009.02.008 10.1109/ICNSC.2008.4525240 10.1007/s11269-011-9840-z 10.1016/j.agwat.2014.09.021 10.5296/npa.v10i2.13205 10.3390/en11123427 10.1109/JSEN.2016.2614748 10.1002/2017GL075619 10.1016/j.agwat.2015.12.009 10.1016/j.agwat.2015.08.011 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
| DOI | 10.1109/JSEN.2021.3069266 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Solid State and Superconductivity Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Engineering Agriculture |
| EISSN | 1558-1748 |
| EndPage | 17491 |
| ExternalDocumentID | 10_1109_JSEN_2021_3069266 9388691 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Jawaharlal Nehru University, New Delhi, India |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ AAYXX CITATION 7SP 7U5 8FD L7M |
| ID | FETCH-LOGICAL-c293t-21c2fa5c31e62653c05e0d33aafb240c7f99a890c03bf8012e85d35fa09e08983 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 124 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000684707400013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1530-437X |
| IngestDate | Mon Jun 30 10:13:12 EDT 2025 Sat Nov 29 05:43:10 EST 2025 Tue Nov 18 21:51:46 EST 2025 Wed Aug 27 02:39:26 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 16 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-21c2fa5c31e62653c05e0d33aafb240c7f99a890c03bf8012e85d35fa09e08983 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9113-2890 0000-0002-2798-0104 0000-0002-6041-9327 |
| PQID | 2560914122 |
| PQPubID | 75733 |
| PageCount | 13 |
| ParticipantIDs | crossref_citationtrail_10_1109_JSEN_2021_3069266 crossref_primary_10_1109_JSEN_2021_3069266 ieee_primary_9388691 proquest_journals_2560914122 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-08-15 |
| PublicationDateYYYYMMDD | 2021-08-15 |
| PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE sensors journal |
| PublicationTitleAbbrev | JSEN |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref12 (ref4) 2020 (ref38) 2020 ref15 ref36 ref14 ref31 ref30 ref33 ref11 ref32 ref10 (ref2) 2020 ref39 ref17 ref16 ref19 ref18 liu (ref26) 0; 2010 (ref37) 2020 ref24 ref23 (ref34) 1999 ref25 ref20 ref22 ref21 ref28 ref27 (ref3) 2020 ref29 ref8 ref7 ref9 (ref1) 2020 (ref6) 2020 ref5 |
| References_xml | – ident: ref14 doi: 10.1016/j.envsoft.2014.09.020 – ident: ref9 doi: 10.21273/HORTTECH.21.3.309 – ident: ref33 doi: 10.1109/IOTM.0001.1900046 – ident: ref16 doi: 10.1016/j.compag.2013.12.004 – ident: ref39 doi: 10.5194/hess-16-4079-2012 – ident: ref20 doi: 10.1016/j.jhydrol.2018.04.065 – ident: ref30 doi: 10.1016/j.enbuild.2016.06.005 – ident: ref21 doi: 10.1016/j.jhydrol.2017.11.018 – ident: ref32 doi: 10.5194/hess-22-6005-2018 – year: 1999 ident: ref34 publication-title: U S Department of Agriculture Handbook Soil Taxonomy A Basic System of Soil Classification for Making and Interpreting Soil Surveys – ident: ref35 doi: 10.12785/amis/070537 – ident: ref25 doi: 10.1109/SMARTCOMP.2016.7501673 – ident: ref12 doi: 10.1016/j.compag.2016.04.003 – volume: 2010 start-page: 361 year: 0 ident: ref26 article-title: Data assimilation using support vector machines and ensemble Kalman filter for multi-layer soil moisture prediction publication-title: Water Sci Eng – ident: ref17 doi: 10.1109/CIFEr.2012.6327793 – ident: ref18 doi: 10.3390/pr5030046 – ident: ref36 doi: 10.1016/j.agwat.2014.10.022 – ident: ref10 doi: 10.1007/s00271-011-0313-1 – ident: ref13 doi: 10.1109/TIA.2018.2871392 – year: 2020 ident: ref4 publication-title: Water for Sustainable Food and Agriculture by FAO – ident: ref5 doi: 10.1109/PowerAfrica.2018.8521025 – ident: ref23 doi: 10.1016/j.jhydrol.2016.11.007 – ident: ref31 doi: 10.1007/s40010-017-0401-6 – ident: ref11 doi: 10.1016/j.envsoft.2009.02.008 – ident: ref29 doi: 10.1109/ICNSC.2008.4525240 – year: 2020 ident: ref2 publication-title: Ice Snow and Glaciers and the Water Cycle – year: 2020 ident: ref6 publication-title: Clean Water Crisis Facts and Information-National Geographic – ident: ref24 doi: 10.1007/s11269-011-9840-z – ident: ref7 doi: 10.1016/j.agwat.2014.09.021 – year: 2020 ident: ref1 publication-title: World Population Projected to Reach 9 8 Billion in 2050 and 11 2 Billion in 2100 – ident: ref8 doi: 10.5296/npa.v10i2.13205 – year: 2020 ident: ref37 publication-title: India Water Resource Information System – ident: ref28 doi: 10.3390/en11123427 – year: 2020 ident: ref3 publication-title: Water Facts-Worldwide Water Supply – year: 2020 ident: ref38 publication-title: Central Water Commission Ministry of Jal Shakti Government of India – ident: ref27 doi: 10.1109/JSEN.2016.2614748 – ident: ref19 doi: 10.1002/2017GL075619 – ident: ref15 doi: 10.1016/j.agwat.2015.12.009 – ident: ref22 doi: 10.1016/j.agwat.2015.08.011 |
| SSID | ssj0019757 |
| Score | 2.6620328 |
| Snippet | Recently, precision agriculture has gained substantial attention due to the ever-growing world population demands for food and water. Consequently, farmers... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 17479 |
| SubjectTerms | Agriculture Arable land Data models Deep learning Farmers Intelligent sensors Internet of Things Irrigation Irrigation systems long short term memory Machine learning Moisture content Neural networks precision agriculture Predictive models sensor Sensors Soil moisture Spatial distribution |
| Title | Towards Precision Agriculture: IoT-Enabled Intelligent Irrigation Systems Using Deep Learning Neural Network |
| URI | https://ieeexplore.ieee.org/document/9388691 https://www.proquest.com/docview/2560914122 |
| Volume | 21 |
| WOSCitedRecordID | wos000684707400013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-1748 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019757 issn: 1530-437X databaseCode: RIE dateStart: 20010101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_oENSDH1NxOiUHT2I1aZol8TZ04kTGwCm7lTZJVZBNuin435tkWRUUwVsPLyX0l_R9_x7AEYldF1qWRayVqCjhQkfSBfKF45vKWyZnfvLcwy3v9cRwKPsLcFL1whhjfPGZOXWPPpevx-rNhcrOJBWi5VrVFznns16tKmMguWf1tBcYRwnlw5DBJFie3dx1etYTjMmptY9l7AkRv3SQH6ry40_s1cvV-v82tgFrwYxE7Rnum7BgRnVY_UYuWIflMN_86WMLXga-OnaC-mWYqYPaj2Wg3TDnqDseRB3fRaVRtyLpnKJuWXoKDisfqM2RrzFAl8a8osDN-ogcw4fdTW9WUr4N91edwcV1FOYsRMoq-2kUExUXGVOUGOveMKowM1hTmmVFbhW-4oWUmZBYYZoXTqMZwTRlRYalwUIKugO10XhkdgHlOpfCGm1ca5bQguRaWIOLyhbTBBtRNADPv3yqAgm5m4XxknpnBMvUgZU6sNIAVgOOqyWvMwaOv4S3HDqVYACmAc05vGm4o5PUGXuSJCSO935ftQ8r7t0ugkxYE2rT8s0cwJJ6nz5PykN__D4BNsTW4A |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH8MFdSDH1NxfubgSawmTbMm3kQnm84iOGW30iapCrJJNwX_e5Msq4IieOvhhYb-kr7v3wM4IKHtQsuygDUjGUQxV4GwgXxu-abyps6Zmzz30I2ThPf74rYGR1UvjNbaFZ_pY_vocvlqKN9sqOxEUM6btlV9lkVRSCbdWlXOQMSO19NcYRxENO77HCbB4uTqrpUYXzAkx8ZCFqGjRPzSQm6syo9_sVMwl8v_29oKLHlDEp1NkF-Fmh7UYfEbvWAd5v2E86ePNXjpufrYEbot_VQddPZYeuINfYo6w17Qcn1UCnUqms4x6pSlI-Ew8p7cHLkqA3Sh9Svy7KyPyHJ8mN0kk6Lydbi_bPXO24GftBBIo-7HQUhkWGRMUqKNg8OoxExjRWmWFblR-TIuhMi4wBLTvLA6TXOmKCsyLDTmgtMNmBkMB3oTUK5ywY3ZFivFIlqQXHFjclHRZIpgzYsG4OmXT6WnIbfTMF5S545gkVqwUgtW6sFqwGG15HXCwfGX8JpFpxL0wDRgZwpv6m_pKLXmniARCcOt31ftw3y7d9NNu53kehsW7HtsPJmwHZgZl296F-bk-_h5VO65o_gJijbaJw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+Precision+Agriculture%3A+IoT-Enabled+Intelligent+Irrigation+Systems+Using+Deep+Learning+Neural+Network&rft.jtitle=IEEE+sensors+journal&rft.au=Kashyap%2C+Pankaj+Kumar&rft.au=Kumar%2C+Sushil&rft.au=Jaiswal%2C+Ankita&rft.au=Prasad%2C+Mukesh&rft.date=2021-08-15&rft.pub=IEEE&rft.issn=1530-437X&rft.volume=21&rft.issue=16&rft.spage=17479&rft.epage=17491&rft_id=info:doi/10.1109%2FJSEN.2021.3069266&rft.externalDocID=9388691 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |