Towards Precision Agriculture: IoT-Enabled Intelligent Irrigation Systems Using Deep Learning Neural Network

Recently, precision agriculture has gained substantial attention due to the ever-growing world population demands for food and water. Consequently, farmers will need water and arable land to meet this demand. Due to the limited availability of both resources, farmers need a solution that changes the...

Full description

Saved in:
Bibliographic Details
Published in:IEEE sensors journal Vol. 21; no. 16; pp. 17479 - 17491
Main Authors: Kashyap, Pankaj Kumar, Kumar, Sushil, Jaiswal, Ankita, Prasad, Mukesh, Gandomi, Amir H.
Format: Journal Article
Language:English
Published: New York IEEE 15.08.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1530-437X, 1558-1748
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Recently, precision agriculture has gained substantial attention due to the ever-growing world population demands for food and water. Consequently, farmers will need water and arable land to meet this demand. Due to the limited availability of both resources, farmers need a solution that changes the way they operate. Precision irrigation is the solution to deliver bigger, better, and more profitable yields with fewer resources. Several machine learning-based irrigation models have been proposed to use water more efficiently. Due to the limited learning ability of these models, they are not well suited to unpredictable climates. In this context, this paper proposes a deep learning neural network-based Internet of Things (IoT)-enabled intelligent irrigation system for precision agriculture (DLiSA). This is a feedback integrated system that keeps its functionality better in the weather of any region for any period of time. DLiSA utilizes a long short-term memory network (LSTM) to predict the volumetric soil moisture content for one day ahead, irrigation period, and spatial distribution of water required to feed the arable land. It is evident from the simulation results that DLiSA uses water more wisely than state-of-the-art models in the experimental farming area.
AbstractList Recently, precision agriculture has gained substantial attention due to the ever-growing world population demands for food and water. Consequently, farmers will need water and arable land to meet this demand. Due to the limited availability of both resources, farmers need a solution that changes the way they operate. Precision irrigation is the solution to deliver bigger, better, and more profitable yields with fewer resources. Several machine learning-based irrigation models have been proposed to use water more efficiently. Due to the limited learning ability of these models, they are not well suited to unpredictable climates. In this context, this paper proposes a deep learning neural network-based Internet of Things (IoT)-enabled intelligent irrigation system for precision agriculture (DLiSA). This is a feedback integrated system that keeps its functionality better in the weather of any region for any period of time. DLiSA utilizes a long short-term memory network (LSTM) to predict the volumetric soil moisture content for one day ahead, irrigation period, and spatial distribution of water required to feed the arable land. It is evident from the simulation results that DLiSA uses water more wisely than state-of-the-art models in the experimental farming area.
Author Gandomi, Amir H.
Jaiswal, Ankita
Prasad, Mukesh
Kashyap, Pankaj Kumar
Kumar, Sushil
Author_xml – sequence: 1
  givenname: Pankaj Kumar
  orcidid: 0000-0002-6041-9327
  surname: Kashyap
  fullname: Kashyap, Pankaj Kumar
  email: pankaj76_scs@jnu.ac.in
  organization: School of Computer and Systems Sciences, Jawaharlal Nehru University, New Delhi, India
– sequence: 2
  givenname: Sushil
  orcidid: 0000-0001-9113-2890
  surname: Kumar
  fullname: Kumar, Sushil
  email: skdohare@mail.jnu.ac.in
  organization: School of Computer and Systems Sciences, Jawaharlal Nehru University, New Delhi, India
– sequence: 3
  givenname: Ankita
  surname: Jaiswal
  fullname: Jaiswal, Ankita
  email: ankita79_scs@jnu.ac.in
  organization: School of Computer and Systems Sciences, Jawaharlal Nehru University, New Delhi, India
– sequence: 4
  givenname: Mukesh
  surname: Prasad
  fullname: Prasad, Mukesh
  email: mukesh.prasad@uts.edu.au
  organization: Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, Australia
– sequence: 5
  givenname: Amir H.
  orcidid: 0000-0002-2798-0104
  surname: Gandomi
  fullname: Gandomi, Amir H.
  email: gandomi@uts.edu.au
  organization: Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, Australia
BookMark eNp9kE1LAzEQhoMo-PkDxMuC562TZLObeBOtWilVaAveljQ7W6JrtiZZiv_eri0ePHh6Z-B9ZuA5JvuudUjIOYUBpaCunqbDyYABowMOuWJ5vkeOqBAypUUm9_uZQ5rx4vWQHIfwBkBVIYoj0szatfZVSF48Ghts65Kbpbema2Ln8ToZtbN06PSiwSoZuYhNY5foYjLy3i517PvTrxDxIyTzYN0yuUNcJWPU3vXbBDuvm03EdevfT8lBrZuAZ7s8IfP74ez2MR0_P4xub8apYYrHlFHDai0Mp5izXHADAqHiXOt6wTIwRa2UlgoM8EUtgTKUouKi1qAQpJL8hFxu7658-9lhiOVb23m3eVkykYOiGWVs06LblvFtCB7rcuXth_ZfJYWyl1r2UstearmTumGKP4yx8UdD9No2_5IXW9Ii4u8nxaXMFeXfLtaHOA
CODEN ISJEAZ
CitedBy_id crossref_primary_10_1007_s11277_022_10016_5
crossref_primary_10_1080_23311916_2022_2100573
crossref_primary_10_3390_agronomy14010047
crossref_primary_10_1109_ACCESS_2024_3390581
crossref_primary_10_3103_S8756699023010156
crossref_primary_10_1016_j_eswa_2023_120194
crossref_primary_10_1109_ACCESS_2022_3143524
crossref_primary_10_3390_en14175217
crossref_primary_10_3390_agriengineering7040106
crossref_primary_10_3390_s23167081
crossref_primary_10_1007_s42979_024_03319_w
crossref_primary_10_1109_ACCESS_2023_3315649
crossref_primary_10_3390_su16020475
crossref_primary_10_33693_2313_223X_2024_11_5_20_36
crossref_primary_10_1016_j_iot_2024_101356
crossref_primary_10_3390_s25123583
crossref_primary_10_3390_w15091657
crossref_primary_10_3390_iot6020021
crossref_primary_10_1109_JSEN_2022_3221960
crossref_primary_10_3390_w14071034
crossref_primary_10_1371_journal_pone_0319268
crossref_primary_10_1080_0954898X_2024_2383893
crossref_primary_10_1038_s41598_024_81322_0
crossref_primary_10_1002_agj2_70035
crossref_primary_10_3390_s22103910
crossref_primary_10_1007_s10462_023_10466_8
crossref_primary_10_1109_TNSM_2022_3145056
crossref_primary_10_3390_agronomy11112256
crossref_primary_10_1016_j_rser_2023_113858
crossref_primary_10_1016_j_inffus_2024_102601
crossref_primary_10_1002_spe_3324
crossref_primary_10_1016_j_isci_2024_111407
crossref_primary_10_1109_JSTARS_2023_3345473
crossref_primary_10_3390_s21123942
crossref_primary_10_1007_s11042_024_20418_1
crossref_primary_10_3390_drones9080531
crossref_primary_10_1007_s41976_024_00174_4
crossref_primary_10_1007_s11220_024_00512_2
crossref_primary_10_1080_10406026_2025_2545839
crossref_primary_10_1155_2021_5575802
crossref_primary_10_1007_s42044_025_00269_1
crossref_primary_10_24054_rcta_v2i42_1296
crossref_primary_10_1007_s11004_025_10211_7
crossref_primary_10_1007_s12083_025_01966_1
crossref_primary_10_3390_s24082647
crossref_primary_10_1007_s10489_025_06259_x
crossref_primary_10_1109_JSEN_2024_3488278
crossref_primary_10_1109_ACCESS_2024_3482088
crossref_primary_10_69882_adba_chf_2024072
crossref_primary_10_3390_agriculture15111213
crossref_primary_10_1016_j_atech_2025_100935
crossref_primary_10_1016_j_eij_2025_100691
crossref_primary_10_3390_fi16070234
crossref_primary_10_3390_agronomy13020477
crossref_primary_10_1109_JIOT_2024_3363451
crossref_primary_10_7717_peerj_cs_1595
crossref_primary_10_1051_bioconf_202414201004
crossref_primary_10_1371_journal_pone_0317277
crossref_primary_10_32604_cmc_2022_021789
crossref_primary_10_1016_j_biosystemseng_2025_104220
crossref_primary_10_26634_jic_12_1_20362
crossref_primary_10_3390_plants11223118
crossref_primary_10_1007_s40808_022_01452_0
crossref_primary_10_1007_s00217_024_04473_4
crossref_primary_10_3389_frobt_2022_808484
crossref_primary_10_3390_mca29040049
crossref_primary_10_1002_ird_3095
crossref_primary_10_1016_j_heliyon_2025_e42136
crossref_primary_10_1007_s12652_021_03644_5
crossref_primary_10_1038_s41598_024_76915_8
crossref_primary_10_1016_j_agwat_2024_108710
crossref_primary_10_1109_JSEN_2022_3200008
crossref_primary_10_3390_agriculture14071141
crossref_primary_10_1088_2515_7620_acf9f2
crossref_primary_10_1109_ACCESS_2022_3220234
crossref_primary_10_3390_genes13101886
crossref_primary_10_3390_s23229244
crossref_primary_10_1007_s44187_025_00338_1
crossref_primary_10_1016_j_geoderma_2025_117304
crossref_primary_10_1109_ACCESS_2024_3522248
crossref_primary_10_1007_s42979_025_03833_5
crossref_primary_10_1016_j_atech_2025_101008
crossref_primary_10_1016_j_suscom_2025_101112
crossref_primary_10_3390_drones6010003
crossref_primary_10_1007_s42853_023_00192_y
crossref_primary_10_1109_TVT_2022_3225524
crossref_primary_10_1007_s42979_024_03159_8
crossref_primary_10_3390_s23042091
crossref_primary_10_3390_agriculture15131351
crossref_primary_10_1109_JSEN_2024_3390681
crossref_primary_10_3390_app13042746
crossref_primary_10_1016_j_agwat_2024_109273
crossref_primary_10_1155_2021_5051863
crossref_primary_10_3390_agronomy14112649
crossref_primary_10_1007_s13042_025_02775_x
crossref_primary_10_1007_s13762_023_04955_0
crossref_primary_10_1016_j_adhoc_2024_103752
crossref_primary_10_1109_ACCESS_2025_3573678
crossref_primary_10_1016_j_adhoc_2024_103632
crossref_primary_10_1016_j_compag_2022_107406
crossref_primary_10_1016_j_adhoc_2025_103818
crossref_primary_10_1016_j_suscom_2025_101191
crossref_primary_10_3390_s23073752
crossref_primary_10_3390_agronomy13020342
crossref_primary_10_1007_s40745_024_00534_3
crossref_primary_10_1038_s41598_024_72197_2
Cites_doi 10.1016/j.envsoft.2014.09.020
10.21273/HORTTECH.21.3.309
10.1109/IOTM.0001.1900046
10.1016/j.compag.2013.12.004
10.5194/hess-16-4079-2012
10.1016/j.jhydrol.2018.04.065
10.1016/j.enbuild.2016.06.005
10.1016/j.jhydrol.2017.11.018
10.5194/hess-22-6005-2018
10.12785/amis/070537
10.1109/SMARTCOMP.2016.7501673
10.1016/j.compag.2016.04.003
10.1109/CIFEr.2012.6327793
10.3390/pr5030046
10.1016/j.agwat.2014.10.022
10.1007/s00271-011-0313-1
10.1109/TIA.2018.2871392
10.1109/PowerAfrica.2018.8521025
10.1016/j.jhydrol.2016.11.007
10.1007/s40010-017-0401-6
10.1016/j.envsoft.2009.02.008
10.1109/ICNSC.2008.4525240
10.1007/s11269-011-9840-z
10.1016/j.agwat.2014.09.021
10.5296/npa.v10i2.13205
10.3390/en11123427
10.1109/JSEN.2016.2614748
10.1002/2017GL075619
10.1016/j.agwat.2015.12.009
10.1016/j.agwat.2015.08.011
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2021.3069266
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
Agriculture
EISSN 1558-1748
EndPage 17491
ExternalDocumentID 10_1109_JSEN_2021_3069266
9388691
Genre orig-research
GrantInformation_xml – fundername: Jawaharlal Nehru University, New Delhi, India
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c293t-21c2fa5c31e62653c05e0d33aafb240c7f99a890c03bf8012e85d35fa09e08983
IEDL.DBID RIE
ISICitedReferencesCount 124
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000684707400013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1530-437X
IngestDate Mon Jun 30 10:13:12 EDT 2025
Sat Nov 29 05:43:10 EST 2025
Tue Nov 18 21:51:46 EST 2025
Wed Aug 27 02:39:26 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-21c2fa5c31e62653c05e0d33aafb240c7f99a890c03bf8012e85d35fa09e08983
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9113-2890
0000-0002-2798-0104
0000-0002-6041-9327
PQID 2560914122
PQPubID 75733
PageCount 13
ParticipantIDs crossref_citationtrail_10_1109_JSEN_2021_3069266
crossref_primary_10_1109_JSEN_2021_3069266
ieee_primary_9388691
proquest_journals_2560914122
PublicationCentury 2000
PublicationDate 2021-08-15
PublicationDateYYYYMMDD 2021-08-15
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref12
(ref4) 2020
(ref38) 2020
ref15
ref36
ref14
ref31
ref30
ref33
ref11
ref32
ref10
(ref2) 2020
ref39
ref17
ref16
ref19
ref18
liu (ref26) 0; 2010
(ref37) 2020
ref24
ref23
(ref34) 1999
ref25
ref20
ref22
ref21
ref28
ref27
(ref3) 2020
ref29
ref8
ref7
ref9
(ref1) 2020
(ref6) 2020
ref5
References_xml – ident: ref14
  doi: 10.1016/j.envsoft.2014.09.020
– ident: ref9
  doi: 10.21273/HORTTECH.21.3.309
– ident: ref33
  doi: 10.1109/IOTM.0001.1900046
– ident: ref16
  doi: 10.1016/j.compag.2013.12.004
– ident: ref39
  doi: 10.5194/hess-16-4079-2012
– ident: ref20
  doi: 10.1016/j.jhydrol.2018.04.065
– ident: ref30
  doi: 10.1016/j.enbuild.2016.06.005
– ident: ref21
  doi: 10.1016/j.jhydrol.2017.11.018
– ident: ref32
  doi: 10.5194/hess-22-6005-2018
– year: 1999
  ident: ref34
  publication-title: U S Department of Agriculture Handbook Soil Taxonomy A Basic System of Soil Classification for Making and Interpreting Soil Surveys
– ident: ref35
  doi: 10.12785/amis/070537
– ident: ref25
  doi: 10.1109/SMARTCOMP.2016.7501673
– ident: ref12
  doi: 10.1016/j.compag.2016.04.003
– volume: 2010
  start-page: 361
  year: 0
  ident: ref26
  article-title: Data assimilation using support vector machines and ensemble Kalman filter for multi-layer soil moisture prediction
  publication-title: Water Sci Eng
– ident: ref17
  doi: 10.1109/CIFEr.2012.6327793
– ident: ref18
  doi: 10.3390/pr5030046
– ident: ref36
  doi: 10.1016/j.agwat.2014.10.022
– ident: ref10
  doi: 10.1007/s00271-011-0313-1
– ident: ref13
  doi: 10.1109/TIA.2018.2871392
– year: 2020
  ident: ref4
  publication-title: Water for Sustainable Food and Agriculture by FAO
– ident: ref5
  doi: 10.1109/PowerAfrica.2018.8521025
– ident: ref23
  doi: 10.1016/j.jhydrol.2016.11.007
– ident: ref31
  doi: 10.1007/s40010-017-0401-6
– ident: ref11
  doi: 10.1016/j.envsoft.2009.02.008
– ident: ref29
  doi: 10.1109/ICNSC.2008.4525240
– year: 2020
  ident: ref2
  publication-title: Ice Snow and Glaciers and the Water Cycle
– year: 2020
  ident: ref6
  publication-title: Clean Water Crisis Facts and Information-National Geographic
– ident: ref24
  doi: 10.1007/s11269-011-9840-z
– ident: ref7
  doi: 10.1016/j.agwat.2014.09.021
– year: 2020
  ident: ref1
  publication-title: World Population Projected to Reach 9 8 Billion in 2050 and 11 2 Billion in 2100
– ident: ref8
  doi: 10.5296/npa.v10i2.13205
– year: 2020
  ident: ref37
  publication-title: India Water Resource Information System
– ident: ref28
  doi: 10.3390/en11123427
– year: 2020
  ident: ref3
  publication-title: Water Facts-Worldwide Water Supply
– year: 2020
  ident: ref38
  publication-title: Central Water Commission Ministry of Jal Shakti Government of India
– ident: ref27
  doi: 10.1109/JSEN.2016.2614748
– ident: ref19
  doi: 10.1002/2017GL075619
– ident: ref15
  doi: 10.1016/j.agwat.2015.12.009
– ident: ref22
  doi: 10.1016/j.agwat.2015.08.011
SSID ssj0019757
Score 2.6620328
Snippet Recently, precision agriculture has gained substantial attention due to the ever-growing world population demands for food and water. Consequently, farmers...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 17479
SubjectTerms Agriculture
Arable land
Data models
Deep learning
Farmers
Intelligent sensors
Internet of Things
Irrigation
Irrigation systems
long short term memory
Machine learning
Moisture content
Neural networks
precision agriculture
Predictive models
sensor
Sensors
Soil moisture
Spatial distribution
Title Towards Precision Agriculture: IoT-Enabled Intelligent Irrigation Systems Using Deep Learning Neural Network
URI https://ieeexplore.ieee.org/document/9388691
https://www.proquest.com/docview/2560914122
Volume 21
WOSCitedRecordID wos000684707400013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-1748
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019757
  issn: 1530-437X
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB6qCOrBR6tYX-TgSdw2j-5u4k20xXooghV6W9I8VJBWtlXw35ukcRUUwdseJkvYb5OZSWa-D-DEdztmEnf87qeSjsxIwpUyCdd87DIQSzKLg9hEPhjw0Ujc1uCs6oUxxoTiM9Pyj-EuX0_Vqz8qawvGeeZb1ZfyPF_0alU3BiIPrJ5uAeOkw_JRvMEkWLRv7roDlwlS0nLxsaCBEPHLBwVRlR87cXAvvc3_TWwLNmIYiS4WuG9DzUzqsP6NXLAOq1Hf_PG9Ac_DUB07Q7dl1NRBFw9lpN0w56g_HSbd0EWlUb8i6ZyjflkGCg5nH6nNUagxQFfGvKDIzfqAPMOHm81gUVK-A_e97vDyOok6C4lyzn6eUKKolalixLj0JmUKpwZrxqS0Y-fwVW6FkFxghdnYeo9meKpZaiUWBnPB2S4sT6YTswfISspT60JK6zJHizW3LsBhWuKcakp01gT8-eULFUnIvRbGcxGSESwKD1bhwSoiWE04rYa8LBg4_jJueHQqwwhMEw4_4S3iGp0VPtgTpEMo3f991AGs-Xf7E2SSHsLyvHw1R7Ci3uZPs_I4_H4fvrfXZQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB5FKVLpoUAKIrQFHzghtvFjHza3qk2UQFlFIki5rRw_AlKURJukEv--tuMsSKBK3PYw1lr7rT0z9sz3Abz33Y65xKnf_VSSypwkXCmTcM1nLgOxJLc4iE0UZcmnUzFuwcemF8YYE4rPzJV_DHf5eqV2_qisJxjnuW9VP8rSlJJ9t1ZzZyCKwOvpljBOUlZM4x0mwaL3-Vu_dLkgJVcuQhY0UCL-9kJBVuWvvTg4mMGz_5vacziNgSS63iP_Alpm2YGTP-gFO3AcFc5__DqDxSTUx27QuI6qOuh6XkfiDfMJjVaTpB_6qDQaNTSdWzSq60DC4ewjuTkKVQbo1pg1iuysc-Q5Ptxsyn1R-Uv4PuhPboZJVFpIlHP324QSRa3MFCPGJTgZUzgzWDMmpZ05l68KK4TkAivMZtb7NMMzzTIrsTCYC85eQXu5WprXgKykPLMuqLQud7RYc-tCHKYlLqimROddwIcvX6lIQ-7VMBZVSEewqDxYlQerimB14UMzZL3n4HjM-Myj0xhGYLpwcYC3iqt0U_lwT5CUUPrm36PewfFw8vWuuhuVX87hqX-PP08m2QW0t_XOXMITdb_9uanfhl_xARmQ2qw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+Precision+Agriculture%3A+IoT-Enabled+Intelligent+Irrigation+Systems+Using+Deep+Learning+Neural+Network&rft.jtitle=IEEE+sensors+journal&rft.au=Kashyap%2C+Pankaj+Kumar&rft.au=Kumar%2C+Sushil&rft.au=Jaiswal%2C+Ankita&rft.au=Prasad%2C+Mukesh&rft.date=2021-08-15&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=21&rft.issue=16&rft.spage=17479&rft_id=info:doi/10.1109%2FJSEN.2021.3069266&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon