A Novel Spatial Sampling Scheme for DOA Estimation With Movable Arbitrary Sparse Arrays

Sparse arrays have been an important concept in the study of direction of arrival (DOA) estimation since they can obtain the number of degrees of freedom (DOFs) is much larger than that of the number of physical sensors. However, the missing lags in the difference co-array reduce the DOF that is exp...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE sensors journal Ročník 22; číslo 11; s. 10974 - 10985
Hlavní autoři: Ma, Penghui, Li, Jianfeng, Pan, Jingjing, Zhang, Xiaofei
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.06.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1530-437X, 1558-1748
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Sparse arrays have been an important concept in the study of direction of arrival (DOA) estimation since they can obtain the number of degrees of freedom (DOFs) is much larger than that of the number of physical sensors. However, the missing lags in the difference co-array reduce the DOF that is expected. Recently, array motion has received considerable attention, since this operation can fill the missing lags, increase the DOF, and enlarge the array aperture without adding extra physical sensors. In this study, we investigate the DOA estimation of array mounted on a moving platform and propose the condition and corresponding spatial sampling scheme that can result in a complete consecutive difference co-array. Specifically, we first explore the general expression of the synthetic array, which is generated by collecting the sampling data of a moving array at different times. After that, the closed-form expression for the difference co-array corresponding to the synthetic array is derived. Thirdly, we introduce the condition that must be satisfied to generate a hole-free difference co-array for movable arbitrary arrays. Then, based on this condition, we develop a non-uniform sampling method that can fill all the missing lags and lead to a fully consecutive difference co-array regardless of the physical geometry, which can therefore improve uniform DOFs (uDOFs). Finally, several classical arrays, including uniform linear array, coprime array, nested array, etc., are adopted to apply the proposed sampling scheme, and the closed-form expressions of the resulting uDOFs are analyzed in detail. Numerical simulations are presented to illustrate the effectiveness and superiority of the proposed sampling scheme in DOA estimation performance.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1530-437X
1558-1748
DOI:10.1109/JSEN.2022.3168739