A New Nonlinear Chirp Scaling Algorithm for High-Squint High-Resolution SAR Imaging

Among high-squint high-resolution (HSHR) synthetic aperture radar imaging algorithms, nonlinear chirp scaling algorithm (NLCSA) and its extensions, such as extended NLCSA (ENLCSA), have a common drawback in that they all neglect the spatial variations of linear range migration (LRM) and Doppler cent...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE geoscience and remote sensing letters Ročník 14; číslo 12; s. 2225 - 2229
Hlavní autoři: Wang, Yan, Li, Jingwen, Xu, Feng, Yang, Jian
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 01.12.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1545-598X, 1558-0571
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Among high-squint high-resolution (HSHR) synthetic aperture radar imaging algorithms, nonlinear chirp scaling algorithm (NLCSA) and its extensions, such as extended NLCSA (ENLCSA), have a common drawback in that they all neglect the spatial variations of linear range migration (LRM) and Doppler centroid, and thus, only targets in a specific central slant range plane can be strictly focused. In this letter, we show that by using a new NLCSA, targets can be focused in the ground plane under HSHR conditions. Based on a more accurate 2-D spectrum, the new NLCSA outperforms the ENLCSA by introducing a new range-Doppler domain interpolation to correct residual range migration and a new perturbation function to remove the dependence of Doppler phase on azimuth. The coefficients of the new perturbation function are numerically calculated and then smoothed by polynomial fitting. Though the outputs of the numerical calculation are somewhat unstable at the current stage, it has been demonstrated to perform better than the algorithms neglecting the spatial variations of LRM and Doppler centroid, such as the ENLCSA, by point target simulations.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1545-598X
1558-0571
DOI:10.1109/LGRS.2017.2758386