HM-Modularity: A Harmonic Motif Modularity Approach for Multi-Layer Network Community Detection
Multi-layer network community detection has drawn an increasing amount of attention recently. Despite success, the existing methods mainly focus on the lower-order connectivity structure at the level of individual nodes and edges. And the higher-order connectivity structure has been largely ignored,...
Uloženo v:
| Vydáno v: | IEEE transactions on knowledge and data engineering Ročník 33; číslo 6; s. 2520 - 2533 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.06.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1041-4347, 1558-2191 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Multi-layer network community detection has drawn an increasing amount of attention recently. Despite success, the existing methods mainly focus on the lower-order connectivity structure at the level of individual nodes and edges. And the higher-order connectivity structure has been largely ignored, which contains better signature of community compared with edges. The main challenges in utilizing higher-order structure for multi-layer network community detection are that the most representative higher-order structure may vary from one layer to another and the connectivity structure formed by the same node subset may exhibit different higher-order connectivity patterns in different layers. To this end, this paper proposes a novel higher-order structure, termed harmonic motif, which is a dense subgraph having on average the largest statistical significance in each layer. Based on the harmonic motif, a primary layer is constructed by integrating higher-order structural information from all layers. Additionally, the higher-order structural information of each individual layer is taken as the auxiliary information. A coupling is established between the primary layer and each auxiliary layer. Accordingly, a harmonic motif modularity is designed to generate the community structure. Extensive experiments on eleven real-world multi-layer network datasets have been conducted to confirm the effectiveness of the proposed method. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1041-4347 1558-2191 |
| DOI: | 10.1109/TKDE.2019.2956532 |