Privacy-Preserving Multi-Keyword Searchable Encryption for Distributed Systems

As cloud storage has been widely adopted in various applications, how to protect data privacy while allowing efficient data search and retrieval in a distributed environment remains a challenging research problem. Existing searchable encryption schemes are still inadequate on desired functionality a...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on parallel and distributed systems Ročník 32; číslo 3; s. 561 - 574
Hlavní autoři: Liu, Xueqiao, Yang, Guomin, Susilo, Willy, Tonien, Joseph, Liu, Ximeng, Shen, Jian
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.03.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1045-9219, 1558-2183
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:As cloud storage has been widely adopted in various applications, how to protect data privacy while allowing efficient data search and retrieval in a distributed environment remains a challenging research problem. Existing searchable encryption schemes are still inadequate on desired functionality and security/privacy perspectives. Specifically, supporting multi-keyword search under the multi-user setting, hiding search pattern and access pattern, and resisting keyword guessing attacks (KGA) are the most challenging tasks. In this article, we present a new searchable encryption scheme that addresses the above problems simultaneously, which makes it practical to be adopted in distributed systems. It not only enables multi-keyword search over encrypted data under a multi-writer/multi-reader setting but also guarantees the data and search pattern privacy. To prevent KGA, our scheme adopts a multi-server architecture, which accelerates search response, shares the workload, and lowers the key leakage risk by allowing only authorized servers to jointly test whether a search token matches a stored ciphertext. A novel subset decision mechanism is also designed as the core technique underlying our scheme and can be further used in applications other than keyword search. Finally, we prove the security and evaluate the computational and communication efficiency of our scheme to demonstrate its practicality.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1045-9219
1558-2183
DOI:10.1109/TPDS.2020.3027003