Equivalence Checking of Sequential Quantum Circuits

We define a formal framework for equivalence checking of sequential quantum circuits. The model we adopt is a quantum state machine, which is a natural quantum generalization of Mealy machines. A major difficulty in checking quantum circuits (but not present in checking classical circuits) is that t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computer-aided design of integrated circuits and systems Jg. 41; H. 9; S. 3143 - 3156
Hauptverfasser: Wang, Qisheng, Li, Riling, Ying, Mingsheng
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.09.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0278-0070, 1937-4151
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We define a formal framework for equivalence checking of sequential quantum circuits. The model we adopt is a quantum state machine, which is a natural quantum generalization of Mealy machines. A major difficulty in checking quantum circuits (but not present in checking classical circuits) is that the state spaces of quantum circuits are continuums. This difficulty is resolved by our main theorem showing that equivalence checking of two quantum Mealy machines can be done with input sequences that are taken from some chosen basis (which are finite) and have a length quadratic in the dimensions of the state Hilbert spaces of the machines. Based on this theoretical result, we develop an (and to the best of our knowledge, the first) algorithm for checking equivalence of sequential quantum circuits with running time <inline-formula> <tex-math notation="LaTeX">\mathcal {O}(2^{3m+5l}(2^{3m}{\,+\,}2^{3l})) </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">m </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">l </tex-math></inline-formula> denote the numbers of input and internal qubits, respectively. The complexity of our algorithm is comparable with that of the known algorithms for checking classical sequential circuits in the sense that both are exponential in the number of (qu)bits. Several case studies and experiments are presented.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0278-0070
1937-4151
DOI:10.1109/TCAD.2021.3117506