Weak‐form element differential method for solving mechanics and heat conduction problems with abruptly changed boundary conditions

Summary Element differential method (EDM), as a newly proposed numerical method, has been applied to solve many engineering problems because it has higher computational efficiency and it is more stable than other strong‐form methods. However, due to the utilization of strong‐form equations for all n...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal for numerical methods in engineering Ročník 121; číslo 16; s. 3722 - 3741
Hlavní autori: Zheng, Yong‐Tong, Gao, Xiao‐Wei, Lv, Jun, Peng, Hai‐Feng
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Hoboken, USA John Wiley & Sons, Inc 30.08.2020
Wiley Subscription Services, Inc
Predmet:
ISSN:0029-5981, 1097-0207
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Summary Element differential method (EDM), as a newly proposed numerical method, has been applied to solve many engineering problems because it has higher computational efficiency and it is more stable than other strong‐form methods. However, due to the utilization of strong‐form equations for all nodes, EDM become not so accurate when solving problems with abruptly changed boundary conditions. To overcome this weakness, in this article, the weak‐form formulations are introduced to replace the original formulations of element internal nodes in EDM, which produce a new strong‐weak‐form method, named as weak‐form element differential method (WEDM). WEDM has advantages in both the computational accuracy and the numerical stability when dealing with the abruptly changed boundary conditions. Moreover, it can even achieve higher accuracy than finite element method (FEM) in some cases. In this article, the computational accuracy of EDM, FEM, and WEDM are compared and analyzed. Meanwhile, several examples are performed to verify the robustness and efficiency of the proposed WEDM.
AbstractList Element differential method (EDM), as a newly proposed numerical method, has been applied to solve many engineering problems because it has higher computational efficiency and it is more stable than other strong-form methods. However, due to the utilization of strong-form equations for all nodes, EDM become not so accurate when solving problems with abruptly changed boundary conditions. To overcome this weakness, in this article, the weak-form formulations are introduced to replace the original formulations of element internal nodes in EDM, which produce a new strong-weak-form method, named as weak-form element differential method (WEDM). WEDM has advantages in both the computational accuracy and the numerical stability when dealing with the abruptly changed boundary conditions. Moreover, it can even achieve higher accuracy than finite element method (FEM) in some cases. In this article, the computational accuracy of EDM, FEM, and WEDM are compared and analyzed. Meanwhile, several examples are performed to verify the robustness and efficiency of the proposed WEDM.
Element differential method (EDM), as a newly proposed numerical method, has been applied to solve many engineering problems because it has higher computational efficiency and it is more stable than other strong‐form methods. However, due to the utilization of strong‐form equations for all nodes, EDM become not so accurate when solving problems with abruptly changed boundary conditions. To overcome this weakness, in this article, the weak‐form formulations are introduced to replace the original formulations of element internal nodes in EDM, which produce a new strong‐weak‐form method, named as weak‐form element differential method (WEDM). WEDM has advantages in both the computational accuracy and the numerical stability when dealing with the abruptly changed boundary conditions. Moreover, it can even achieve higher accuracy than finite element method (FEM) in some cases. In this article, the computational accuracy of EDM, FEM, and WEDM are compared and analyzed. Meanwhile, several examples are performed to verify the robustness and efficiency of the proposed WEDM.
Summary Element differential method (EDM), as a newly proposed numerical method, has been applied to solve many engineering problems because it has higher computational efficiency and it is more stable than other strong‐form methods. However, due to the utilization of strong‐form equations for all nodes, EDM become not so accurate when solving problems with abruptly changed boundary conditions. To overcome this weakness, in this article, the weak‐form formulations are introduced to replace the original formulations of element internal nodes in EDM, which produce a new strong‐weak‐form method, named as weak‐form element differential method (WEDM). WEDM has advantages in both the computational accuracy and the numerical stability when dealing with the abruptly changed boundary conditions. Moreover, it can even achieve higher accuracy than finite element method (FEM) in some cases. In this article, the computational accuracy of EDM, FEM, and WEDM are compared and analyzed. Meanwhile, several examples are performed to verify the robustness and efficiency of the proposed WEDM.
Author Gao, Xiao‐Wei
Lv, Jun
Peng, Hai‐Feng
Zheng, Yong‐Tong
Author_xml – sequence: 1
  givenname: Yong‐Tong
  orcidid: 0000-0001-5690-1340
  surname: Zheng
  fullname: Zheng, Yong‐Tong
  organization: Dalian University of Technology
– sequence: 2
  givenname: Xiao‐Wei
  orcidid: 0000-0001-5818-4058
  surname: Gao
  fullname: Gao, Xiao‐Wei
  organization: Dalian University of Technology
– sequence: 3
  givenname: Jun
  surname: Lv
  fullname: Lv, Jun
  organization: Dalian University of Technology
– sequence: 4
  givenname: Hai‐Feng
  orcidid: 0000-0003-3657-2564
  surname: Peng
  fullname: Peng, Hai‐Feng
  email: hfpeng@dlut.edu.cn
  organization: Dalian University of Technology
BookMark eNp1kMtOxCAUhonRxPGS-Agkbtx0BFqmZWmMt8TLRuOyoeXgoC2MQDWzc-ED-Iw-idRxZXTFCXzf4Zx_C61bZwGhPUqmlBB2aHuYzvJSrKEJJaLMCCPlOpqkJ5FxUdFNtBXCIyGUcpJP0Ps9yKfPtw_tfI-hgx5sxMpoDT5VRna4hzh3CicAB9e9GPuQrtq5tKYNWFqF5yAjbp1VQxuNs3jhXZMaBfxq4hzLxg-L2C3xqDyAwo0brJJ--a2Y0Qg7aEPLLsDuz7mN7k5Pbo_Ps8ubs4vjo8usZSIXmSoIiEIXOQjBdSUVL5uyYLxilVYVo62uSgaCN0qWTcMl8KKcCTWjXM6YaCDfRvurvmnE5wFCrB_d4G36smZFURUsF4QmarqiWu9C8KDr1kQ5Dhq9NF1NST0mXaek6zHpJBz8Ehbe9GnFv9Bshb6aDpb_cvX11ck3_wVbjpMU
CitedBy_id crossref_primary_10_1016_j_jocs_2023_102038
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125216
crossref_primary_10_1002_nme_7645
crossref_primary_10_1016_j_enganabound_2023_01_026
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124352
crossref_primary_10_1007_s00366_024_01963_7
Cites_doi 10.1016/j.ijheatmasstransfer.2017.08.039
10.1007/b13382
10.1016/j.jcp.2008.03.027
10.1016/j.cma.2018.06.021
10.1006/jcph.1998.6165
10.1016/j.enganabound.2005.05.011
10.1002/nme.4693
10.1016/j.ijheatmasstransfer.2018.05.100
10.1007/978-3-642-48860-3
10.1017/CBO9780511605345
10.1007/s00466-004-0610-0
10.1016/0045-7949(72)90020-X
10.1002/nme.1602
10.1007/s00466-019-01799-9
10.1016/j.ijmecsci.2018.12.032
10.1002/nme.715
10.1002/nme.5193
10.1002/nme.5604
10.1080/10407790.2018.1461491
10.1016/S0045-7825(96)01078-X
10.1016/j.apm.2018.11.036
10.1016/j.ijheatmasstransfer.2018.07.155
10.1016/j.jcp.2010.11.023
10.1016/j.camwa.2019.05.026
10.1002/nme.1733
10.1016/j.enganabound.2015.01.011
10.1007/s11012-014-0014-y
10.1016/j.enganabound.2014.05.006
10.1016/0045-7949(80)90149-2
10.1016/j.cma.2015.01.006
ContentType Journal Article
Copyright 2020 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2020 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1002/nme.6379
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Mathematics
EISSN 1097-0207
EndPage 3741
ExternalDocumentID 10_1002_nme_6379
NME6379
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 11672061; 11702054; 11772083
GroupedDBID -~X
.3N
.4S
.DC
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RWS
RX1
RYL
SUPJJ
TN5
TUS
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
O8X
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c2939-d40e94f43e995f8ad57b7425828fd821cf872e95bda7bb5ae54769d615a629be3
IEDL.DBID DRFUL
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000535535600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0029-5981
IngestDate Fri Jul 25 12:30:44 EDT 2025
Sat Nov 29 06:43:58 EST 2025
Tue Nov 18 22:14:58 EST 2025
Wed Jan 22 16:37:51 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2939-d40e94f43e995f8ad57b7425828fd821cf872e95bda7bb5ae54769d615a629be3
Notes Funding information
National Natural Science Foundation of China, 11672061; 11702054; 11772083
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5818-4058
0000-0001-5690-1340
0000-0003-3657-2564
PQID 2448423901
PQPubID 996376
PageCount 20
ParticipantIDs proquest_journals_2448423901
crossref_citationtrail_10_1002_nme_6379
crossref_primary_10_1002_nme_6379
wiley_primary_10_1002_nme_6379_NME6379
PublicationCentury 2000
PublicationDate 30 August 2020
PublicationDateYYYYMMDD 2020-08-30
PublicationDate_xml – month: 08
  year: 2020
  text: 30 August 2020
  day: 30
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Bognor Regis
PublicationTitle International journal for numerical methods in engineering
PublicationYear 2020
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2018; 340
2018; 127
2010
2016; 107
2017; 49
1999; 150
2015; 287
2019; 78
2018; 126
2015; 121
2009
2003; 57
2014; 49
2008; 227
2014; 46
2005
2004
2003
2002
2005; 29
2017; 115
1972; 2
2011; 230
2015; 67
2015; 60
2006; 68
2000
2006; 66
2019; 68
2018; 113
1980; 11
1987
1984
2019; 218
2018; 73
2020; 65
2013
2019; 151
2014; 99
1996; 139
2019; 230
2005; 35
2009; 39
Liu GR (e_1_2_8_27_1) 2013
e_1_2_8_28_1
Zhang X (e_1_2_8_18_1) 2009; 39
Liu GR (e_1_2_8_21_1) 2005
Yang JJ (e_1_2_8_45_1) 2017; 49
Divo E (e_1_2_8_10_1) 2003
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
Liu GR (e_1_2_8_22_1) 2010
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
Belytschko T (e_1_2_8_26_1) 2000
Lv J (e_1_2_8_43_1) 2019; 230
e_1_2_8_20_1
e_1_2_8_42_1
Lv J (e_1_2_8_29_1) 2015; 121
e_1_2_8_44_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
Zienkiewicz OC (e_1_2_8_24_1) 2005
Xu BB (e_1_2_8_46_1) 2019; 218
Zhang X (e_1_2_8_23_1) 2004
Tornabene F (e_1_2_8_35_1) 2015; 67
e_1_2_8_32_1
Gao XW (e_1_2_8_8_1) 2002
e_1_2_8_31_1
e_1_2_8_11_1
Hughes TJR (e_1_2_8_25_1) 1987
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 151
  start-page: 828
  year: 2019
  end-page: 841
  article-title: Element differential method for free and forced vibration analysis for solids
  publication-title: Int J Mech Sci
– year: 2009
– volume: 29
  start-page: 1047
  issue: 11
  year: 2005
  end-page: 1065
  article-title: Transient heat conduction in anisotropic and functionally graded media by local integral equations
  publication-title: Eng Anal Bound Elem
– volume: 57
  start-page: 975
  issue: 7
  year: 2003
  end-page: 990
  article-title: Boundary element analysis in thermoelasticity with and without internal cells
  publication-title: Int J Numer Methods Eng
– volume: 65
  start-page: 877
  issue: 3
  year: 2020
  end-page: 903
  article-title: Arbitrary order recursive formulation of meshfree gradients with application to superconvergent collocation analysis of Kirchhoff plates
  publication-title: Comput Mech
– year: 2005
– volume: 66
  start-page: 1411
  issue: 9
  year: 2006
  end-page: 1431
  article-title: A meshless BEM for isotropic heat conduction problems with heat generation and spatially varying conductivity
  publication-title: Int J Numer Methods Eng
– volume: 67
  issue: 0208012
  year: 2015
  article-title: Strong formulation finite element method based on differential quadrature: a survey
  publication-title: Appl Mech Rev
– volume: 68
  start-page: 306
  year: 2019
  end-page: 326
  article-title: Finite and infinite block Petrov‐Galerkin method for cracks in functionally graded materials
  publication-title: Appl Math Model
– year: 1987
– year: 2003
– year: 2000
– volume: 218
  issue: 106575
  year: 2019
  article-title: Galerkin free element method and its application in fracture mechanics
  publication-title: Eng Fract Mech
– volume: 287
  start-page: 54
  year: 2015
  end-page: 68
  article-title: A new approach for computing hyper‐singular interface stresses in IIBEM for solving multi‐medium elasticity problems
  publication-title: Comput Methods Appl Mech Eng
– volume: 78
  start-page: 3563
  issue: 11
  year: 2019
  end-page: 3585
  article-title: A novel element differential method for solid mechanical problems using isoparametric triangular and tetrahedral elements
  publication-title: Comput Math Appl
– volume: 227
  start-page: 7125
  issue: 15
  year: 2008
  end-page: 7159
  article-title: High order conservative finite difference scheme for variable density low Mach number turbulent flows
  publication-title: J Comput Phys
– volume: 73
  start-page: 206
  issue: 4
  year: 2018
  end-page: 224
  article-title: Element differential method with the simplest quadrilateral and hexahedron quadratic elements for solving heat conduction problems
  publication-title: Numer Heat Transf B Fundam
– volume: 340
  start-page: 728
  year: 2018
  end-page: 766
  article-title: Superconvergent gradient smoothing meshfree collocation method
  publication-title: Comput Methods Appl Mech Eng
– year: 2010
– volume: 49
  start-page: 659
  issue: 3
  year: 2017
  article-title: Meshless local strong‐weak (MLSW) method for irregular domain problems
  publication-title: Chin J Theoret Appl Mech
– volume: 2
  start-page: 17
  issue: 1
  year: 1972
  end-page: 29
  article-title: Finite difference techniques for variable grids
  publication-title: Comput Struct
– volume: 127
  start-page: 1189
  year: 2018
  end-page: 1197
  article-title: Element differential method for solving transient heat conduction problems
  publication-title: Int J Heat Mass Transf
– year: 1984
– volume: 39
  start-page: 1
  issue: 01
  year: 2009
  end-page: 36
  article-title: Meshfree methods and their applications
  publication-title: Adv Mech
– volume: 230
  start-page: 1585
  issue: 4
  year: 2011
  end-page: 1601
  article-title: WENO schemes on arbitrary mixed‐element unstructured meshes in three space dimensions
  publication-title: J Comput Phys
– volume: 121
  year: 2015
  article-title: Numerical integration approach based on radial integration method for general 3D polyhedral finite elements
  publication-title: Int J Comput Methods
– volume: 11
  start-page: 83
  issue: 1
  year: 1980
  end-page: 95
  article-title: The finite difference method at arbitrary irregular grids and its application in applied mechanics
  publication-title: Comput Struct
– year: 2002
– volume: 107
  start-page: 696
  issue: 8
  year: 2016
  end-page: 720
  article-title: An interface integral equation method for solving general multi‐medium mechanics problems
  publication-title: Int J Numer Methods Eng
– year: 2004
– volume: 49
  start-page: 2503
  issue: 10
  year: 2014
  end-page: 2542
  article-title: A strong formulation finite element method (SFEM) based on RBF and GDQ techniques for the static and dynamic analyses of laminated plates of arbitrary shape
  publication-title: Meccanica
– volume: 150
  start-page: 97
  issue: 1
  year: 1999
  end-page: 127
  article-title: Weighted essentially non‐oscillatory schemes on triangular meshes
  publication-title: J Comput Phys
– volume: 60
  start-page: 106
  issue: SI
  year: 2015
  end-page: 114
  article-title: Finite block Petrov‐Galerkin method in transient heat conduction
  publication-title: Eng Anal Bound Elem
– volume: 68
  start-page: 728
  issue: 7
  year: 2006
  end-page: 754
  article-title: Radial point interpolation based finite difference method for mechanics problems
  publication-title: Int J Numer Methods Eng
– volume: 99
  start-page: 372
  issue: 5
  year: 2014
  end-page: 390
  article-title: Finite block method for transient heat conduction analysis in functionally graded media
  publication-title: Int J Numer Methods Eng
– volume: 115
  start-page: 882
  issue: B
  year: 2017
  end-page: 894
  article-title: Element differential method for solving general heat conduction problems
  publication-title: Int J Heat Mass Transf
– volume: 35
  start-page: 134
  issue: 2
  year: 2005
  end-page: 145
  article-title: A meshfree weak‐strong (MWS) form method for time dependent problems
  publication-title: Comput Mech
– volume: 126
  start-page: 1111
  issue: A
  year: 2018
  end-page: 1119
  article-title: Numerical solution of multi‐dimensional transient nonlinear heat conduction problems with heat sources by an extended element differential method
  publication-title: Int J Heat Mass Transf
– volume: 46
  start-page: 116
  year: 2014
  end-page: 125
  article-title: Finite block method in elasticity
  publication-title: Eng Anal Bound Elem
– volume: 230
  issue: 111483
  year: 2019
  article-title: An efficient collocation approach for piezoelectric problems based on the element differential method
  publication-title: Compos Struct
– volume: 113
  start-page: 82
  issue: 1
  year: 2018
  end-page: 108
  article-title: Element differential method and its application in thermal‐mechanical problems
  publication-title: Int J Numer Methods Eng
– volume: 139
  start-page: 3
  issue: 1–4
  year: 1996
  end-page: 47
  article-title: Meshless methods: an overview and recent developments
  publication-title: Comput Methods Appl Mech Eng
– year: 2013
– ident: e_1_2_8_36_1
  doi: 10.1016/j.ijheatmasstransfer.2017.08.039
– ident: e_1_2_8_28_1
  doi: 10.1007/b13382
– ident: e_1_2_8_3_1
  doi: 10.1016/j.jcp.2008.03.027
– ident: e_1_2_8_19_1
  doi: 10.1016/j.cma.2018.06.021
– volume: 121
  start-page: 15500265
  year: 2015
  ident: e_1_2_8_29_1
  article-title: Numerical integration approach based on radial integration method for general 3D polyhedral finite elements
  publication-title: Int J Comput Methods
– ident: e_1_2_8_4_1
  doi: 10.1006/jcph.1998.6165
– volume-title: The Finite Element Method
  year: 2005
  ident: e_1_2_8_24_1
– ident: e_1_2_8_14_1
  doi: 10.1016/j.enganabound.2005.05.011
– ident: e_1_2_8_31_1
  doi: 10.1002/nme.4693
– volume: 49
  start-page: 659
  issue: 3
  year: 2017
  ident: e_1_2_8_45_1
  article-title: Meshless local strong‐weak (MLSW) method for irregular domain problems
  publication-title: Chin J Theoret Appl Mech
– ident: e_1_2_8_39_1
  doi: 10.1016/j.ijheatmasstransfer.2018.05.100
– volume: 230
  issue: 111483
  year: 2019
  ident: e_1_2_8_43_1
  article-title: An efficient collocation approach for piezoelectric problems based on the element differential method
  publication-title: Compos Struct
– ident: e_1_2_8_9_1
  doi: 10.1007/978-3-642-48860-3
– volume-title: Boundary Element Programming in Mechanics
  year: 2002
  ident: e_1_2_8_8_1
– ident: e_1_2_8_11_1
  doi: 10.1017/CBO9780511605345
– ident: e_1_2_8_44_1
  doi: 10.1007/s00466-004-0610-0
– ident: e_1_2_8_2_1
  doi: 10.1016/0045-7949(72)90020-X
– volume-title: Boundary Element Method for Heat Conduction: With Applications in Non‐homogenous Media
  year: 2003
  ident: e_1_2_8_10_1
– ident: e_1_2_8_13_1
  doi: 10.1002/nme.1602
– ident: e_1_2_8_20_1
  doi: 10.1007/s00466-019-01799-9
– volume-title: An Introduction to Meshfree Methods and Their Programming
  year: 2005
  ident: e_1_2_8_21_1
– volume-title: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis
  year: 1987
  ident: e_1_2_8_25_1
– ident: e_1_2_8_42_1
  doi: 10.1016/j.ijmecsci.2018.12.032
– ident: e_1_2_8_15_1
  doi: 10.1002/nme.715
– volume-title: Nonlinear Finite Elements for Continua and Structures
  year: 2000
  ident: e_1_2_8_26_1
– ident: e_1_2_8_12_1
  doi: 10.1002/nme.5193
– volume: 39
  start-page: 1
  issue: 01
  year: 2009
  ident: e_1_2_8_18_1
  article-title: Meshfree methods and their applications
  publication-title: Adv Mech
– volume: 218
  issue: 106575
  year: 2019
  ident: e_1_2_8_46_1
  article-title: Galerkin free element method and its application in fracture mechanics
  publication-title: Eng Fract Mech
– ident: e_1_2_8_37_1
  doi: 10.1002/nme.5604
– ident: e_1_2_8_38_1
  doi: 10.1080/10407790.2018.1461491
– ident: e_1_2_8_17_1
  doi: 10.1016/S0045-7825(96)01078-X
– ident: e_1_2_8_33_1
  doi: 10.1016/j.apm.2018.11.036
– ident: e_1_2_8_40_1
  doi: 10.1016/j.ijheatmasstransfer.2018.07.155
– volume: 67
  issue: 0208012
  year: 2015
  ident: e_1_2_8_35_1
  article-title: Strong formulation finite element method based on differential quadrature: a survey
  publication-title: Appl Mech Rev
– ident: e_1_2_8_5_1
  doi: 10.1016/j.jcp.2010.11.023
– ident: e_1_2_8_41_1
  doi: 10.1016/j.camwa.2019.05.026
– volume-title: Meshfree Methods Moving Beyond the Finite Element Method
  year: 2010
  ident: e_1_2_8_22_1
– ident: e_1_2_8_6_1
  doi: 10.1002/nme.1733
– ident: e_1_2_8_32_1
  doi: 10.1016/j.enganabound.2015.01.011
– ident: e_1_2_8_34_1
  doi: 10.1007/s11012-014-0014-y
– ident: e_1_2_8_30_1
  doi: 10.1016/j.enganabound.2014.05.006
– ident: e_1_2_8_7_1
  doi: 10.1016/0045-7949(80)90149-2
– volume-title: The Finite Element Method: A Practical Course
  year: 2013
  ident: e_1_2_8_27_1
– ident: e_1_2_8_16_1
  doi: 10.1016/j.cma.2015.01.006
– volume-title: Meshless Methods
  year: 2004
  ident: e_1_2_8_23_1
SSID ssj0011503
Score 2.3806279
Snippet Summary Element differential method (EDM), as a newly proposed numerical method, has been applied to solve many engineering problems because it has higher...
Element differential method (EDM), as a newly proposed numerical method, has been applied to solve many engineering problems because it has higher...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3722
SubjectTerms Accuracy
Boundary conditions
Conduction heating
Conductive heat transfer
element differential method
Finite element method
heat conduction
Mathematical analysis
Nodes
Numerical methods
Numerical stability
Problem solving
Robustness (mathematics)
solid mechanics
strong‐weak‐form method
Title Weak‐form element differential method for solving mechanics and heat conduction problems with abruptly changed boundary conditions
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnme.6379
https://www.proquest.com/docview/2448423901
Volume 121
WOSCitedRecordID wos000535535600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1097-0207
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011503
  issn: 0029-5981
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NShxBEC7i6sEc3MQfskZDC6Kn0Z2_7emjqEsOcZGg6G3o7qkBcd0sO2vAWw55AJ_RJ0nVdM-6goKQ0zBDFQzdXdVfdVd9BbCrEC3tyjZAYylAIcgfGIky0FYmBKCRQgbXbEIOBtn1tTr3WZVcC-P4IWYHbmwZtb9mA9emOpwjDb3Dg14s1QIsck0VBV6LJz_7lz9mdwgEdeImwSNVWdhQz3ajw0b35Wb0jDDncWq90fTb__OLn2DFw0tx5NbDZ_iAo1Voe6gpvCFXq_BxjoeQ3s5m5K3VGvy9Qn379OeR4axAl14umkYq5BCGwrWdFiQgaOnykQR94hJi0hd6VAj28IIi7cJx0wrftqYSfOwrtJncj6fDB-Gqjgth6t5Ok4daxeWQrcNl__Ti-HvgmzUElhCDCoqkiyopkxiVSstMF6k0FHbzrVxZZFFoy0xGqFJTaGlMqjFNZE8VBKh0L1IG4w1ojX6N8AuIkknqZZyYkmJPg0aVYWLCyMbaGvIX2IH9ZtZy65nMuaHGMHcczFFOA5_zwHdgZyY5duwdr8hsNROfe_utcgI9GVMjdsMO7NVT_KZ-Pjg75efmewW_wnLEQTsfTHe3oDWd3OM2LNnf05tq8s2v4n-ZW_pz
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fSyMxEB-0Cp4P_j-s1jOC6NPa7r9mg0-iFsW2yKHo25JkZ0GuV6Vbhb754AfwM_pJnGx2aw8UhHsKWWZgSTKT30yS3wDsCkRNu7J2UGkKUAjyO4ojd6TmAQFopJDBFpvg3W50eysup-CwfAtj-SHGCTdjGbm_NgZuEtL1CdbQv3jQ9LmYhpmA2qgCMye_W9ft8SECYR2_vOERisgtuWcbXr3U_Xc3-oCYk0A132lai__1j0uwUABMdmRXxDJMYX8FFguwyQpTzlZgfoKJkHqdMX1rtgovNyj_vD2_GkDL0F4wZ2UpFXIJPWYLTzMSYLR4TVKCPplHxKTPZD9hxsczirUTy07LisI1GTOJXybV4PFh2Bsx--44YSqv7jQY5Sr2FtkaXLdOr47PnKJcg6MJMwgnCRoogjTwUYgwjWQSckWBtzmXS5PIc3UacQ9FqBLJlQolhgFvioQglWx6QqH_Eyr9-z6uA0sNTT33A5VS9KlQidQNlOtpX2pFHgOrsF9OW6wLLnNTUqMXWxZmL6aBj83AV2FnLPlg-Ts-kamVMx8XFpzFBHsiQ47YcKuwl8_xl_pxt3Nq2o3vCm7D3NlVpx23z7sXm_DDMyG8SVM3alAZDh5xC2b10_AuG_wqlvQ7hy3-Yw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fS9xAEB_0FLEPWrWlp9auIPoUvSSb2yw-SfVQ1ENE0bewfyZQel6Py1nwrQ_9AH5GP4mz2eR6QgXBp5AwA2F3Z_Y3s7O_AdiSiIZ2ZROgNhSgEOQPtEARKCM4AWikkME3mxDdbnp7Ky-mYL--C-P5IcYJN2cZpb92Bo4Dm-9NsIbe4W47FnIaZngiE96AmcPLzvXZ-BCBsE5cV3gkMg1r7tlWtFfrvtyN_kHMSaBa7jSdxXf940dYqAAmO_ArYgmmsL8MixXYZJUpF8vwYYKJkN7Ox_StxQr8vUH18-nPowO0DH2BOatbqZBL6DHfeJqRAKPF65IS9MldIiZ9pvqWOR_PKNa2np2WVY1rCuYSv0zp4f1g1Htg_t6xZbrs7jR8KFV8FdknuO4cXX0_Dqp2DYEhzCADy1soec5jlDLJU2UToSnwdudyuU2j0OSpiFAm2iqhdaIw4aItLUEq1Y6kxvgzNPq_-vgFWO5o6kXMdU7Rp0Yt85DrMDKxMpo8BjZhp562zFRc5q6lRi_zLMxRRgOfuYFvwuZYcuD5O_4js17PfFZZcJER7EkdOWIrbMJ2Ocev6mfd8yP3XH2r4DeYuzjsZGcn3dM1mI9cBO-y1K11aIyG9_gVZs3v0Y9iuFGt6GcWy_3e
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Weak-form+element+differential+method+for+solving+mechanics+and+heat+conduction+problems+with+abruptly+changed+boundary+conditions&rft.jtitle=International+journal+for+numerical+methods+in+engineering&rft.au=Yong-Tong%2C+Zheng&rft.au=Xiao-Wei%2C+Gao&rft.au=Lv%2C+Jun&rft.au=Hai-Feng%2C+Peng&rft.date=2020-08-30&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0029-5981&rft.eissn=1097-0207&rft.volume=121&rft.issue=16&rft.spage=3722&rft.epage=3741&rft_id=info:doi/10.1002%2Fnme.6379&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5981&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5981&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5981&client=summon