Weak‐form element differential method for solving mechanics and heat conduction problems with abruptly changed boundary conditions
Summary Element differential method (EDM), as a newly proposed numerical method, has been applied to solve many engineering problems because it has higher computational efficiency and it is more stable than other strong‐form methods. However, due to the utilization of strong‐form equations for all n...
Gespeichert in:
| Veröffentlicht in: | International journal for numerical methods in engineering Jg. 121; H. 16; S. 3722 - 3741 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Hoboken, USA
John Wiley & Sons, Inc
30.08.2020
Wiley Subscription Services, Inc |
| Schlagworte: | |
| ISSN: | 0029-5981, 1097-0207 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Summary
Element differential method (EDM), as a newly proposed numerical method, has been applied to solve many engineering problems because it has higher computational efficiency and it is more stable than other strong‐form methods. However, due to the utilization of strong‐form equations for all nodes, EDM become not so accurate when solving problems with abruptly changed boundary conditions. To overcome this weakness, in this article, the weak‐form formulations are introduced to replace the original formulations of element internal nodes in EDM, which produce a new strong‐weak‐form method, named as weak‐form element differential method (WEDM). WEDM has advantages in both the computational accuracy and the numerical stability when dealing with the abruptly changed boundary conditions. Moreover, it can even achieve higher accuracy than finite element method (FEM) in some cases. In this article, the computational accuracy of EDM, FEM, and WEDM are compared and analyzed. Meanwhile, several examples are performed to verify the robustness and efficiency of the proposed
WEDM. |
|---|---|
| Bibliographie: | Funding information National Natural Science Foundation of China, 11672061; 11702054; 11772083 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0029-5981 1097-0207 |
| DOI: | 10.1002/nme.6379 |