Application programming interface recommendation for smart contract using deep learning from augmented code representation
Application programming interface (API) recommendation plays a crucial role in facilitating smart contract development by providing developers with a ranked list of candidate APIs for specific recommendation points. Deep learning‐based approaches have shown promising results in this field. However,...
Saved in:
| Published in: | Journal of software : evolution and process Vol. 36; no. 8 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Chichester
Wiley Subscription Services, Inc
01.08.2024
|
| Subjects: | |
| ISSN: | 2047-7473, 2047-7481 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Application programming interface (API) recommendation plays a crucial role in facilitating smart contract development by providing developers with a ranked list of candidate APIs for specific recommendation points. Deep learning‐based approaches have shown promising results in this field. However, existing approaches mainly rely on token sequences or syntax trees (ASTs) for learning recommendation point‐related features, which may overlook the essential knowledge implied in the relations between or within statements and may include task‐irrelevant components during feature learning. To address these limitations, we propose a novel code graph called pruned and augmented AST (pa‐AST). Our approach enhances the AST by incorporating additional knowledge derived from the control and data flow relations between and within statements in the smart contract code. Through this augmentation, the pa‐AST can better represent the semantic features of the code. Furthermore, we conduct AST pruning to eliminate task‐irrelevant components based on the identified flow relations. This step helps mitigate the interference caused by these irrelevant parts during the model feature learning process. Additionally, we extract the API sequence surrounding the recommendation point to provide supplementary knowledge for the model learning. The experimental results demonstrate our proposed approach achieving an average mean reciprocal rank (MRR) of 68.02%, outperforming the baselines' performance. Furthermore, through ablation experiments, we explore the effectiveness of our proposed code representation approach. The results indicate that combining pa‐AST with the API sequence yields improved performance compared with using them individually. Moreover, our AST augmentation and pruning techniques significantly contribute to the overall results.
This paper proposes a learning‐based approach for API recommendation in smart contracts. We propose a code graph named pruned and augmented AST (pa‐AST) with the API sequence to capture the semantic features surrounding recommendation points. Meanwhile, we utilize a GAT‐based model for code feature learning and API recommendation. |
|---|---|
| AbstractList | Application programming interface (API) recommendation plays a crucial role in facilitating smart contract development by providing developers with a ranked list of candidate APIs for specific recommendation points. Deep learning‐based approaches have shown promising results in this field. However, existing approaches mainly rely on token sequences or syntax trees (ASTs) for learning recommendation point‐related features, which may overlook the essential knowledge implied in the relations between or within statements and may include task‐irrelevant components during feature learning. To address these limitations, we propose a novel code graph called pruned and augmented AST (pa‐AST). Our approach enhances the AST by incorporating additional knowledge derived from the control and data flow relations between and within statements in the smart contract code. Through this augmentation, the pa‐AST can better represent the semantic features of the code. Furthermore, we conduct AST pruning to eliminate task‐irrelevant components based on the identified flow relations. This step helps mitigate the interference caused by these irrelevant parts during the model feature learning process. Additionally, we extract the API sequence surrounding the recommendation point to provide supplementary knowledge for the model learning. The experimental results demonstrate our proposed approach achieving an average mean reciprocal rank (MRR) of 68.02%, outperforming the baselines' performance. Furthermore, through ablation experiments, we explore the effectiveness of our proposed code representation approach. The results indicate that combining pa‐AST with the API sequence yields improved performance compared with using them individually. Moreover, our AST augmentation and pruning techniques significantly contribute to the overall results.
This paper proposes a learning‐based approach for API recommendation in smart contracts. We propose a code graph named pruned and augmented AST (pa‐AST) with the API sequence to capture the semantic features surrounding recommendation points. Meanwhile, we utilize a GAT‐based model for code feature learning and API recommendation. Application programming interface (API) recommendation plays a crucial role in facilitating smart contract development by providing developers with a ranked list of candidate APIs for specific recommendation points. Deep learning‐based approaches have shown promising results in this field. However, existing approaches mainly rely on token sequences or abstract syntax trees (ASTs) for learning recommendation point‐related features, which may overlook the essential knowledge implied in the relations between or within statements and may include task‐irrelevant components during feature learning. To address these limitations, we propose a novel code graph called pruned and augmented AST (pa‐AST). Our approach enhances the AST by incorporating additional knowledge derived from the control and data flow relations between and within statements in the smart contract code. Through this augmentation, the pa‐AST can better represent the semantic features of the code. Furthermore, we conduct AST pruning to eliminate task‐irrelevant components based on the identified flow relations. This step helps mitigate the interference caused by these irrelevant parts during the model feature learning process. Additionally, we extract the API sequence surrounding the recommendation point to provide supplementary knowledge for the model learning. The experimental results demonstrate our proposed approach achieving an average mean reciprocal rank (MRR) of 68.02%, outperforming the baselines' performance. Furthermore, through ablation experiments, we explore the effectiveness of our proposed code representation approach. The results indicate that combining pa‐AST with the API sequence yields improved performance compared with using them individually. Moreover, our AST augmentation and pruning techniques significantly contribute to the overall results. |
| Author | Zhang, Jiale Cai, Qian Cai, Jie Li, Bin Sun, Xiaobing |
| Author_xml | – sequence: 1 givenname: Jie orcidid: 0009-0000-9578-8985 surname: Cai fullname: Cai, Jie organization: Yangzhou University – sequence: 2 givenname: Qian surname: Cai fullname: Cai, Qian organization: Yangzhou University – sequence: 3 givenname: Bin surname: Li fullname: Li, Bin email: lb@yzu.edu.cn organization: Yangzhou University – sequence: 4 givenname: Jiale surname: Zhang fullname: Zhang, Jiale organization: Yangzhou University – sequence: 5 givenname: Xiaobing surname: Sun fullname: Sun, Xiaobing organization: Yangzhou University |
| BookMark | eNp1kF1LwzAYhYMoOOfAnxDwxpvONGmb9nIMv2Ai-HEdsvTNyGiTmnTI_PWmq3ghmpt88Jzz5pwzdGydBYQuUjJPCaHXofVzWuTlEZpQkvGEZ2V6_HPm7BTNQtiSuApK8iyfoM9F1zVGyd44izvvNl62rbEbbGwPXksF2INybQu2HiHtPA6t9D1WzvZeqh7vwqCoATrcgPR2uGnvWix3myjsoY5sPTh1HkJ8ODidoxMtmwCz732K3m5vXpf3yerp7mG5WCWKVqxM1oykOWW8yCQHRqGglGmVMwY1VbmSaaWzNWQp11VelpTIoqh1neuYjwPINZuiy9E3xnvfQejF1u28jSMFI2VFonXJIzUfKeVdCB60UGb8Z8xoGpESMVQsYsViqDgKrn4JOm9iL_u_0GREP0wD-3858fL4fOC_ABTUj40 |
| CitedBy_id | crossref_primary_10_3390_computers14040119 |
| Cites_doi | 10.1145/3468264.3473929 10.1145/3212695 10.1109/ICSE43902.2021.00025 10.1109/SANER50967.2021.00050 10.1145/3460319.3469078 10.1145/3238147.3238216 10.1109/ICSE43902.2021.00145 10.1109/ICSE.2012.6227205 10.1007/978-1-4842-2535-6 10.1109/QRS54544.2021.00082 10.1109/SCAM.2016.22 10.1080/00207543.2019.1627439 10.1109/ICSS55994.2022.00046 10.1007/978-1-4842-8975-4_5 10.1145/2950290.2950333 10.1109/ISSRE.2019.00044 10.1049/cje.2020.10.010 10.1017/S0962492900002919 10.1145/3190508.3190538 10.1016/j.jnca.2020.102857 10.1109/ICSE.2019.00109 10.1109/ICSE.2015.336 10.1109/JIOT.2018.2847705 10.18653/v1/2020.findings-emnlp.139 10.1109/ICPC.2019.00045 10.1007/s10664-021-10040-2 10.4249/scholarpedia.1888 10.1007/s11432-018-9821-9 10.1109/ICSE-Companion.2019.00053 10.1007/s11432-021-3529-9 10.1109/ICSE.2017.47 10.1109/TSE.2021.3074309 10.1109/TSE.2023.3252259 10.1109/SANER56733.2023.00034 10.1109/TSE.2019.2942301 10.1016/j.jss.2018.04.060 10.1108/IJIUS-07-2021-0055 10.1162/neco_a_01199 |
| ContentType | Journal Article |
| Copyright | 2024 John Wiley & Sons Ltd. 2024 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: 2024 John Wiley & Sons Ltd. – notice: 2024 John Wiley & Sons, Ltd. |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1002/smr.2658 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2047-7481 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_smr_2658 SMR2658 |
| Genre | article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 62206238; 61972335 |
| GroupedDBID | .3N .4S .GA .Y3 05W 0R~ 10A 1OC 31~ 33P 3SF 50Z 52O 52U 8-0 8-1 8-3 8-4 8-5 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AEQDE AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGYGG AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ATUGU AUFTA AZBYB AZFZN BAFTC BDRZF BHBCM BMNLL BMXJE BRXPI BY8 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EDO EJD F00 F01 F04 G-S G.N GODZA HGLYW HZ~ I-F LATKE LEEKS LH4 LITHE LOXES LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 O66 O9- P2W P2X PQQKQ Q.N Q11 QB0 R.K ROL SUPJJ TUS W8V W99 WBKPD WIH WIK WOHZO WXSBR WYISQ WZISG ~WT AAYXX CITATION O8X 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c2938-b301523764a7e32e6223fc533ed2c5ca19f4be417f958820a66dfd5f0547eeab3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001177053200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2047-7473 |
| IngestDate | Sat Jul 26 02:51:50 EDT 2025 Sat Nov 29 03:00:25 EST 2025 Tue Nov 18 22:04:13 EST 2025 Wed Jun 11 08:24:49 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2938-b301523764a7e32e6223fc533ed2c5ca19f4be417f958820a66dfd5f0547eeab3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0000-9578-8985 |
| PQID | 3089037687 |
| PQPubID | 2034650 |
| PageCount | 19 |
| ParticipantIDs | proquest_journals_3089037687 crossref_citationtrail_10_1002_smr_2658 crossref_primary_10_1002_smr_2658 wiley_primary_10_1002_smr_2658_SMR2658 |
| PublicationCentury | 2000 |
| PublicationDate | August 2024 2024-08-00 20240801 |
| PublicationDateYYYYMMDD | 2024-08-01 |
| PublicationDate_xml | – month: 08 year: 2024 text: August 2024 |
| PublicationDecade | 2020 |
| PublicationPlace | Chichester |
| PublicationPlace_xml | – name: Chichester |
| PublicationTitle | Journal of software : evolution and process |
| PublicationYear | 2024 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2018; 142 2021; 48 2023; 11 2019; 31 2012 2011 2021; 103 2023; 16 2020; 58 1999; 8 2013; 8 2021; 30 2022; 27 2018; 6 2019; 62 2023; 66 2023 2022 2021 2020 2023; 49 2019; 47 2019 2018 2017 2016 2018; 51 2015 2021; 177 2014 e_1_2_11_32_1 e_1_2_11_55_1 e_1_2_11_30_1 e_1_2_11_36_1 e_1_2_11_51_1 e_1_2_11_13_1 e_1_2_11_53_1 e_1_2_11_11_1 e_1_2_11_29_1 e_1_2_11_27_1 e_1_2_11_4_1 e_1_2_11_48_1 e_1_2_11_2_1 e_1_2_11_20_1 e_1_2_11_45_1 e_1_2_11_47_1 e_1_2_11_24_1 e_1_2_11_41_1 e_1_2_11_22_1 e_1_2_11_43_1 e_1_2_11_17_1 e_1_2_11_15_1 e_1_2_11_38_1 e_1_2_11_19_1 e_1_2_11_50_1 Schär F (e_1_2_11_6_1) 2021; 103 e_1_2_11_10_1 e_1_2_11_31_1 e_1_2_11_56_1 Jiang Z (e_1_2_11_8_1) 2023; 16 e_1_2_11_14_1 e_1_2_11_35_1 e_1_2_11_52_1 e_1_2_11_12_1 e_1_2_11_33_1 e_1_2_11_54_1 e_1_2_11_7_1 e_1_2_11_5_1 Krochmalski J (e_1_2_11_34_1) 2014 e_1_2_11_26_1 e_1_2_11_3_1 e_1_2_11_49_1 e_1_2_11_21_1 e_1_2_11_44_1 JoranHonig (e_1_2_11_28_1) 2022 e_1_2_11_46_1 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_42_1 e_1_2_11_18_1 e_1_2_11_16_1 e_1_2_11_37_1 e_1_2_11_39_1 |
| References_xml | – volume: 48 start-page: 2987 issue: 8 year: 2021 end-page: 3009 article-title: Holistic combination of structural and textual code information for context based API recommendation publication-title: IEEE Trans Softw Eng – volume: 58 start-page: 2184 issue: 7 year: 2020 end-page: 2199 article-title: Blockchain‐oriented dynamic modelling of smart contract design and execution in the supply chain publication-title: Int J Prod Res – start-page: 858 year: 2015 end-page: 868 – volume: 8 start-page: 1888 issue: 2 year: 2013 article-title: Recurrent neural networks publication-title: Scholarpedia – volume: 142 start-page: 195 year: 2018 end-page: 205 article-title: MULAPI: improving API method recommendation with API usage location publication-title: J Syst Softw – volume: 16 start-page: 1822 issue: 3 year: 2023 end-page: 1832 article-title: Exploring smart contract recommendation: towards efficient blockchain development publication-title: IEEE Trans Serv Comput – start-page: 438 year: 2017 end-page: 449 – volume: 31 start-page: 1235 issue: 7 year: 2019 end-page: 1270 article-title: A review of recurrent neural networks: LSTM cells and network architectures publication-title: Neural Comput – volume: 6 start-page: 1594 issue: 2 year: 2018 end-page: 1605 article-title: Smart contract‐based access control for the Internet of Things publication-title: IEEE Int Things J – volume: 51 start-page: 1 issue: 4 year: 2018 end-page: 37 article-title: A survey of machine learning for big code and naturalness publication-title: ACM Comput Surv (CSUR) – start-page: 89 year: 2023 end-page: 126 – volume: 62 start-page: 1 year: 2019 end-page: 22 article-title: Generative API usage code recommendation with parameter concretization publication-title: Sci China Inform Sci – volume: 66 issue: 2 year: 2023 article-title: Context‐aware API recommendation using tensor factorization publication-title: Sci China Inform Sci – start-page: 726 year: 2021 end-page: 737 – start-page: 69 year: 2012 end-page: 79 – year: 2014 – start-page: 272 year: 2023 end-page: 283 – start-page: 1050 year: 2019 end-page: 1060 – volume: 30 start-page: 55 issue: 1 year: 2021 end-page: 63 article-title: Are similar bugs fixed with similar change operations? An empirical study publication-title: Chinese J Electron – volume: 47 start-page: 2084 issue: 10 year: 2019 end-page: 2106 article-title: Smart contract development: challenges and opportunities publication-title: IEEE Trans Softw Eng – start-page: 470 year: 2021 end-page: 479 – start-page: 666 year: 2021 end-page: 669 – start-page: 248 year: 2022 end-page: 254 – volume: 177 year: 2021 article-title: Survey on blockchain based smart contracts: applications, opportunities and challenges publication-title: J Netw Comput Appl – start-page: 260 year: 2019 end-page: 270 – volume: 11 start-page: 75 issue: 1 year: 2023 end-page: 87 article-title: Context‐based intelligent recommendation by code reuse for smart decision support and cognitive adaptive systems publication-title: Int J Intell Unmanned Syst – volume: 8 start-page: 143 year: 1999 end-page: 195 article-title: Approximation theory of the MLP model in neural networks publication-title: Acta Numer – start-page: 119 year: 2019 end-page: 122 – volume: 49 start-page: 3289 issue: 5 year: 2023 end-page: 3304 article-title: API usage recommendation via multi‐view heterogeneous graph representation learning publication-title: IEEE Trans Softw Eng – start-page: 1360 year: 2021 end-page: 1370 – year: 2022 – volume: 103 start-page: 153 issue: 2 year: 2021 end-page: 174 article-title: Decentralized finance: on blockchain‐ and smart contract‐based financial markets publication-title: FRB St Louis Rev – year: 2020 – year: 2023 – volume: 27 start-page: 1 year: 2022 end-page: 32 article-title: “More than deep learning”: post‐processing for API sequence recommendation publication-title: Empir Softw Eng – start-page: 51 year: 2016 end-page: 60 – start-page: 511 year: 2016 end-page: 522 – start-page: 30:1 year: 2018 end-page: 30:15 – year: 2017 – start-page: 1017 year: 2011 end-page: 1024 – start-page: 369 year: 2019 end-page: 379 – start-page: 138 year: 2021 end-page: 149 – year: 2019 – start-page: 282 year: 2018 end-page: 292 – start-page: 1634 year: 2021 end-page: 1645 – ident: e_1_2_11_12_1 doi: 10.1145/3468264.3473929 – ident: e_1_2_11_14_1 doi: 10.1145/3212695 – ident: e_1_2_11_44_1 doi: 10.1109/ICSE43902.2021.00025 – volume-title: IntelliJ Idea Essentials year: 2014 ident: e_1_2_11_34_1 – ident: e_1_2_11_21_1 doi: 10.1109/SANER50967.2021.00050 – ident: e_1_2_11_10_1 doi: 10.1145/3460319.3469078 – ident: e_1_2_11_56_1 doi: 10.1145/3238147.3238216 – ident: e_1_2_11_50_1 doi: 10.1109/ICSE43902.2021.00145 – ident: e_1_2_11_40_1 doi: 10.1109/ICSE.2012.6227205 – ident: e_1_2_11_2_1 doi: 10.1007/978-1-4842-2535-6 – ident: e_1_2_11_27_1 doi: 10.1109/QRS54544.2021.00082 – ident: e_1_2_11_41_1 doi: 10.1109/SCAM.2016.22 – ident: e_1_2_11_7_1 doi: 10.1080/00207543.2019.1627439 – ident: e_1_2_11_32_1 – ident: e_1_2_11_13_1 doi: 10.1109/ICSS55994.2022.00046 – ident: e_1_2_11_38_1 – ident: e_1_2_11_9_1 doi: 10.1007/978-1-4842-8975-4_5 – volume-title: tree‐sitter‐solidity year: 2022 ident: e_1_2_11_28_1 – ident: e_1_2_11_54_1 doi: 10.1145/2950290.2950333 – ident: e_1_2_11_43_1 doi: 10.1109/ISSRE.2019.00044 – ident: e_1_2_11_45_1 doi: 10.1049/cje.2020.10.010 – ident: e_1_2_11_30_1 doi: 10.1017/S0962492900002919 – ident: e_1_2_11_39_1 doi: 10.1145/3190508.3190538 – ident: e_1_2_11_36_1 – ident: e_1_2_11_33_1 – ident: e_1_2_11_17_1 – ident: e_1_2_11_4_1 doi: 10.1016/j.jnca.2020.102857 – ident: e_1_2_11_22_1 – ident: e_1_2_11_42_1 doi: 10.1109/ICSE.2019.00109 – ident: e_1_2_11_19_1 – ident: e_1_2_11_53_1 doi: 10.1109/ICSE.2015.336 – ident: e_1_2_11_5_1 doi: 10.1109/JIOT.2018.2847705 – ident: e_1_2_11_31_1 doi: 10.18653/v1/2020.findings-emnlp.139 – volume: 16 start-page: 1822 issue: 3 year: 2023 ident: e_1_2_11_8_1 article-title: Exploring smart contract recommendation: towards efficient blockchain development publication-title: IEEE Trans Serv Comput – ident: e_1_2_11_11_1 doi: 10.1109/ICPC.2019.00045 – ident: e_1_2_11_25_1 doi: 10.1007/s10664-021-10040-2 – ident: e_1_2_11_16_1 doi: 10.4249/scholarpedia.1888 – ident: e_1_2_11_24_1 doi: 10.1007/s11432-018-9821-9 – ident: e_1_2_11_46_1 doi: 10.1109/ICSE-Companion.2019.00053 – ident: e_1_2_11_49_1 doi: 10.1007/s11432-021-3529-9 – ident: e_1_2_11_55_1 doi: 10.1109/ICSE.2017.47 – ident: e_1_2_11_23_1 doi: 10.1109/TSE.2021.3074309 – ident: e_1_2_11_52_1 doi: 10.1109/TSE.2023.3252259 – ident: e_1_2_11_37_1 – ident: e_1_2_11_51_1 doi: 10.1109/SANER56733.2023.00034 – ident: e_1_2_11_48_1 – ident: e_1_2_11_3_1 doi: 10.1109/TSE.2019.2942301 – ident: e_1_2_11_20_1 – ident: e_1_2_11_29_1 – ident: e_1_2_11_15_1 – ident: e_1_2_11_18_1 – ident: e_1_2_11_47_1 doi: 10.1016/j.jss.2018.04.060 – volume: 103 start-page: 153 issue: 2 year: 2021 ident: e_1_2_11_6_1 article-title: Decentralized finance: on blockchain‐ and smart contract‐based financial markets publication-title: FRB St Louis Rev – ident: e_1_2_11_26_1 doi: 10.1108/IJIUS-07-2021-0055 – ident: e_1_2_11_35_1 doi: 10.1162/neco_a_01199 |
| SSID | ssj0000620545 |
| Score | 2.3074467 |
| Snippet | Application programming interface (API) recommendation plays a crucial role in facilitating smart contract development by providing developers with a ranked... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Ablation API recommendation Application programming interface Data augmentation Deep learning Pruning Representations smart contract static analysis |
| Title | Application programming interface recommendation for smart contract using deep learning from augmented code representation |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmr.2658 https://www.proquest.com/docview/3089037687 |
| Volume | 36 |
| WOSCitedRecordID | wos001177053200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 2047-7481 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000620545 issn: 2047-7473 databaseCode: DRFUL dateStart: 20120101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB3RhUMvpYVW3UKRkRCcwiZ2PpwjallxKAgtrLS3yI7Hq0pNutosPfTXM06cXZCoVIlTLraSeGY8L86bNwAnWotIGEwDIzMbxGhNIE0qAkxVrDCWYcp122wiu7mRs1l-61mVrham04dYH7i5yGj3axfgSjejjWhoUy3POeXPN7DNyW3jAWx_n4ynP9YnLHQbwiOOw8idHAHhZtGrz4Z81E9_no82IPMpVG1zzXj3NU_5Ht55hMkuOpf4AFtY78Fu372B-WDeh78Xm3_XzNO0KkpkzClILK0qkbmv5apC33eJEb5lTUW-xlqCuypXzNHm58wgLpjvPzFnrmKFqYd5K_dpmCuaZ612Zl_nVH-E6fjy_ttV4DsxBCXBARlo2gYSx5-JVYaCY0qgwpaEFNHwMilVlNtYYxxlNk8IsocqTY01iaX1zxCVFp9gUP-u8TMwm-hMS9oKpLBxnqKUiYwwE9o6oZ1QDOGst0dReply1y3jV9EJLPOClrRwSzqE4_XIRSfN8cKYw96khQ_OphChzEN6GZkN4bQ13j_nF3fXE3f98r8DD-AtJ9jTUQQPYbBaPuBX2Cn_rH42yyPvoo9JRu3p |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB5BqAQX0hYQgdBupaqcDI7Xj7U4RdAoiCSqKEjcrF3vbISEA8qDA7-eWXudtBJIlXryZVa2d16f1zPfAHxXine4xtjTIjFeiEZ7Qsfcw1iGEkPhx4Eqh00ko5G4u0t_rcFZ3QtT8UMsD9ysZ5Tx2jq4PZA-XbGGzorpSUAJdB02QrKiqAEbF9e928HyiIXuQ4DEFjEGlo-AgDOv6Wf94LRe_ndCWqHMP7FqmWx6zf96zI-w7TAm61ZG8QnWcPIZmvX8BubceQdeuqu_18wVahWUypjlkJgamSOz38tFgW7yEiOEy2YFWRsrS9xlPme2cH7MNOITcxMoxsz2rDC5GJeEn5rZtnlWsmfWnU6TXbjt_bw573tuFoOXEyAQnqJAENkKmlAmyAOMCVaYnLAi6iCPctlJTagw7CQmjQi0-zKOtdGRIQUkiFLxPWhMHie4D8xEKlGCgoHgJkxjFCISHUy4MpZqx-ctOK4VkuWOqNzOy3jIKorlIKMtzeyWtuDbUvKpIud4Q6Zd6zRz7jnLuC9Sn15GJC34UWrv3fXZ7-G1vR78q-BX2OzfDAfZ4HJ0dQhbAYGgqmCwDY35dIFH8CF_nt_Ppl-cvb4CfRzx2Q |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS9xAEB_sWYov2i_xrLZbKPYpNZdNNhv6dGhDxeshtoJvYTc7exSaeNyHD_71ziabuwoVhD7lZZYkO1-_bGZ-A_BJaz7gBkVgZGqDGK0JpBE8QKFihbEMRaSbYRPpeCyvr7OLDfja9cK0_BCrAzfnGU28dg6OU2OP16yh82r2JaIE-gw24yQT5JWbp5f51Wh1xEL3IUDiihgjx0dAwJl39LNhdNwtf5iQ1ijzb6zaJJt8578e8yVse4zJhq1RvIINrF_DTje_gXl3fgN3w_Xfa-YLtSpKZcxxSMysKpG57-WqQj95iRHCZfOKrI01Je6qXDBXOD9hBnHK_ASKCXM9K0wtJw3hp2GubZ417Jldp1P9Fq7yb79Ovgd-FkNQEiCQgaZAkLgKmlilyCMUBCtsSVgRTVQmpRpkNtYYD1KbJQTaQyWEsSaxpIAUUWm-C736psY9YDbRqZYUDCS3cSZQykQOMOXaOqqdkPfhc6eQovRE5W5exp-ipViOCtrSwm1pHz6uJKctOcc_ZA46nRbePecFD2UW0svItA9HjfYeXV_8_HHprvtPFfwALy5O82J0Nj5_B1sRYaC2XvAAeovZEg_heXm7-D2fvffmeg8fHfFU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+programming+interface+recommendation+for+smart+contract+using+deep+learning+from+augmented+code+representation&rft.jtitle=Journal+of+software+%3A+evolution+and+process&rft.au=Cai%2C+Jie&rft.au=Cai%2C+Qian&rft.au=Li%2C+Bin&rft.au=Zhang%2C+Jiale&rft.date=2024-08-01&rft.issn=2047-7473&rft.eissn=2047-7481&rft.volume=36&rft.issue=8&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmr.2658&rft.externalDBID=10.1002%252Fsmr.2658&rft.externalDocID=SMR2658 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2047-7473&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2047-7473&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2047-7473&client=summon |