A modified forward‐backward splitting methods for the sum of two monotone operators with applications to breast cancer prediction

This work proposes a modified forward‐backward splitting algorithm combining an inertial technique for solving the monotone variational inclusion problem. The weak convergence theorem is established under some suitable conditions in Hilbert space, and a new step size is presented for our algorithm t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences Jg. 46; H. 1; S. 1251 - 1265
Hauptverfasser: Peeyada, Pronpat, Dutta, Hemen, Shiangjen, Kanokwatt, Cholamjiak, Watcharaporn
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Freiburg Wiley Subscription Services, Inc 15.01.2023
Schlagworte:
ISSN:0170-4214, 1099-1476
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work proposes a modified forward‐backward splitting algorithm combining an inertial technique for solving the monotone variational inclusion problem. The weak convergence theorem is established under some suitable conditions in Hilbert space, and a new step size is presented for our algorithm to speed up the convergence. We give an example and numerical results for supporting our main theorem in infinite dimensional spaces. We also provide an application to predict breast cancer by using our proposed algorithm for updating the optimal weight in machine learning. Moreover, we use the Wisconsin original breast cancer data set as a training set to show efficiency comparing with the other three algorithms in terms of three key parameters, namely, accuracy, recall, and precision.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0170-4214
1099-1476
DOI:10.1002/mma.8578