Online state and unknown inputs estimation for nonlinear systems with particle filter based recursive expectation‐maximization algorithm

The article presents an innovative approach to simultaneously estimate states and unknown inputs (UIs) in nonlinear systems using a particle filter (PF) based recursive expectation‐maximization (EM) algorithm. This method is distinct from traditional iterative EM algorithms. During the E‐step, it ca...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal of robust and nonlinear control Ročník 34; číslo 13; s. 8768 - 8784
Hlavní autori: Liu, Zhuangyu, Zhao, Shunyi, Wan, Haiying, Luan, Xiaoli, Liu, Fei
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Bognor Regis Wiley Subscription Services, Inc 10.09.2024
Predmet:
ISSN:1049-8923, 1099-1239
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The article presents an innovative approach to simultaneously estimate states and unknown inputs (UIs) in nonlinear systems using a particle filter (PF) based recursive expectation‐maximization (EM) algorithm. This method is distinct from traditional iterative EM algorithms. During the E‐step, it calculates the Q‐function recursively within the maximum likelihood framework, while the PF estimates the system states. The M‐step involves local maximization of the recursive Q‐function to online estimate the UIs. The effectiveness of the PF‐based recursive EM algorithm is demonstrated with a numerical example, and comparisons with the augmented state PF are made to highlight its advantages. Finally, the proposed algorithm is implemented in a real application for the estimation of the continuous fermentation process.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1049-8923
1099-1239
DOI:10.1002/rnc.7416